
New standards are highlighted

9th EDITION ACCREDITATION STANDARDS

of the Commission on Accreditation of Medical Transport System

Although the FAA and other U.S. authorities are referenced in the standards, equivalent regulations outside of the U.S. are referenced when reviewing international medical transport services.

Standards apply to each transport mode unless specifically designated as Rotorwing (RW), Fixed Wing (FW), or Ground (G)

01.00.00 – MANAGEMENT AND QUALITY

01.01.00 MISSION STATEMENT AND SCOPE OF CARE

01.01.01 There is a Mission Statement written in the present tense that describes the purpose of the service, mode(s) of transport provided and its constituents. The Mission Statement directs employees toward the values the service was founded upon.

01.01.02 There is a written scope of care that describes the types of patients accepted. The scope of care is commensurate with the qualifications and level of initial and ongoing education required for medical personnel.

Examples of evidence to meet compliance:
The Mission Statement describes what you do. The scope of care describes what type of services you perform, what patients you transport and what type of medical teams you provide, etc. Both are clear, concise and understood by all. The vision and mission are strategic statements developed by and unique to each organization. Values statements are separate but key underpinnings of these statements. The modes of transport and constituents are not, and must not be part of these statements but, rather, must be included under a “scope of service and care” statement.

01.02.00 FINANCIAL COMMITMENT

01.02.01 There must be evidence of financial commitment to the program by the administrative structure and through financial resources that provide excellence in patient care and safety of the transport environment.

Examples of evidence to meet compliance:
Transport vehicle is well kept – equipment and supplies are well maintained, accessible and adequate for patient population(s)/volume. Physical surroundings are well maintained. There are adequate management and staff personnel for transport volume. Education appropriate to the scope of care and to all aspects of the organization (communications, flight crew, medical crew, etc.) is provided.

01.02.02 Insurance - The transport service must have and maintain insurance against loss or damage of the kinds customarily insured against and in such types and amounts as are customarily carried under similar circumstances by
similar businesses. The insurers must be financially sound and reputable, and they must be qualified to do business in the state(s) or country in which the transport service is located.

The types of insurance must include but are not limited to the following:

1. Hull insurance for each operating aircraft. Aircraft liability provides coverage with a single limit that must comply with the following minimums that are required for accreditation applicants:

a. Fixed Wing (U.S. dollars)
 $5 million for twin engine aircraft
 $25 million for turbo props and light jets*
 $30 million for heavy jets*
 *(See Glossary for definitions of light jets and heavy jets)

 b. Rotorwing – $30 million (U.S. dollars)

2. Auto insurance (for ground vehicles and ambulances owned by the service)-$1 million (U.S. dollars) and includes accidental death and disability.

3. Medical malpractice- $1 million (U.S. dollars)

4. Worker’s compensation – per state or equivalent government guidelines

5. Group life insurance or accidental death and disability must be offered whether paid for by the employer or employee.

01.03.00 MARKETING AND EDUCATION FOR THE PUBLIC

01.03.01 There is a professional and community education program and/or printed information with the target audience to be defined by the medical transport service.

1. Clear identification of the FAA Part 135 Certificate Holder (or pertinent national aviation authority) as the identity that is operating the aircraft is on the program’s website, in marketing materials and on the aircraft. (RW/FW)

2. Must provide evidence of state licensure for each transport vehicle as appropriate to state or local guidelines

3. State or local license for each transport vehicle is accessible to the public

4. Hours of operation, phone number, and access procedure

5. Capabilities of medical transport personnel

6. Type of aircraft/ground interfacility ambulance(s) used and operational protocols specific to type

7. Coverage area for the transport service

8. Preparation and stabilization of the patient
9. Patients considered appropriate for transport by the medical transport service. Generally, an appropriate transport is one that enhances patient outcome, safety and cost effectiveness over other modes of transport.

Examples of evidence to meet compliance:
Marketing materials are up to date, consistent with mission and scope, depict actual types of aircraft/ambulances etc. and do not exaggerate the scope of care or aircraft/ambulance capabilities.

01.04.00 ETHICAL BUSINESS PRACTICES

01.04.01 The transport service develops and demonstrates use of a written code of ethical conduct in all areas of business that demonstrate ethical practices in business, marketing and professional conduct.

1. The code of conduct guides the service when confronted with potential compliance or ethical issues.

2. The code of conduct outlines the service’s standards for ethical behavior as well as contact information and reporting protocols if a standard has been violated.

3. The code of conduct outlines ethical billing practices.

Examples of evidence to meet compliance:
Policies may address such issues as proper/improper behavior toward other programs’ marketing materials, honesty in reporting data, personal cell phone use, use of social networking sites, how ethical issues are addressed, conflicts of interest, phone etiquette, acceptable and unacceptable behaviors on the worksite/on transport, acceptance of gifts from patients/vendors, etc.

01.04.02 Ethical business practices must be maintained in policy and practice and includes specific guidelines for transport requests that are not performed directly by the CAMTS accredited service/service seeking accreditation as follows: (RW/FW/G)

1. Referring transport requests – Referring is defined as transferring the transport request to another program or service. There is no further involvement on the part of the original services and there is no monetary exchange for the referral. If an accredited program refers a transport to another service, the accredited service/service seeking accreditation will attempt to refer a transport to another CAMTS accredited service whenever possible if unable to perform the transport.

2. Subcontracted transport requests – Subcontracted is defined as the occasion when another service is used to supply a portion of the transport, such as the vehicle or the medical team if the service’s vehicle or medical team is not available or is not appropriate.

3. Outsourcing transport requests – Outsourcing is defined as transferring a request to another service but retaining control of the coordination throughout the transport (that may include flight following, arranging for ground transport, hotels, medical direction etc. The service may add a fee for coordinating the transport, but full disclosure of the name of both the medical provider and the vehicle provider must be made to the patient, his/her advocate and the payer source(s). Less than 5% of the domestic requests (transports within the North American continent) may be outsourced.

4. Brokering transport requests - Brokering is defined as arranging for transport and collecting a fee but not actually performing the transport. This is not an acceptable practice of an accredited service. If the accredited service/service seeking accreditation cannot fulfill a request for transport, the service may elect to subcontract or refer the request.
01.04.03 If an accredited service **subcontracts or outsources** a request for transport, the following conditions are maintained in practice and policy: (RW/FW/G)

1. The other service will be CAMTS accredited whenever possible unless there is not one in the service range, or the CAMTS accredited service is not available within an appropriate response time based on patient condition and needs.

2. If unable to subcontract or outsource to a CAMTS accredited service, the service must have written contracts with aviation services and other medical programs that are outsourced to or subcontracted. The contract must state that the service subcontracted or outsourced to is not CAMTS accredited.

 a. Attempts to contact a CAMTS accredited service will be documented (which service and date and time of contact) along with reasons for not contracting with a CAMTS accredited service.

 b. Transport requests that are outsourced to or subcontracted will be tracked and trended as part of the Utilization Review process.

3. If an unfamiliar aircraft/ambulance is used (either by the originating team or the other team), a medical team member familiar with the operation of medical systems, communications and emergency procedures must accompany the transport team.

4. The accredited program will disclose through a signed agreement (that may be signed on site, faxed or electronically transmitted) with the requesting agent, patient and payer source whenever the transport is not performed by their program, medical teams and/or aircraft. (This does not apply to specialty teams that are listed as part of an accredited service.)

Examples of evidence to meet compliance:
Signed agreements reflect when part of the service is not provided by a CAMTS accredited entity such as a subcontracted aircraft or medical team. All referred, subcontracted and/or outsourced requests are tracked and trended in the QM review process.

01.04.04 The transport service will know the capabilities and resources of receiving facilities and will transport patients to appropriate facilities within the service region based on direct referral, approved EMS plan, or services available when no direction is provided.

1. Whenever possible, services that respond directly to the scene will transport patients to the nearest appropriate hospital (i.e., major trauma to the nearest Level I or II Trauma Center, stroke patients to a hospital with specialized stroke care, acute myocardial infarction patients to a hospital with a staffed cardiac catheterization lab, major burns to a Level I or II burn center, high-risk OB patients to a hospital with OB services and a Level II or III NICU, etc.). See References for Centers for Disease Control trauma triage guidelines.

2. Management ensures, through policy, that all transfers of patient care occur from a lower level of care to an equal or higher level of care except for elective transfers for patient convenience or returning a patient to a referring facility/residence.

3. Accurate estimated time of arrivals (ETA’s) are always provided regarding arrival of the service to the patient for emergency requests.

4. Contractual relationships with public services or health care agencies do not reflect implied referrals.
5. Subscription services do not reflect implied referrals that could negatively impact expeditious transport of patients to the most appropriate facility.

Examples of evidence to meet compliance:

Contracts do not exceed current market value for goods and/or services with the intent to influence requests or referral patterns.

01.04.05 All patient care resources, including personnel and equipment, necessary to the program's mission must be readily available in the aircraft/ground transport ambulance or available to place in the aircraft/ground transport ambulance, and they must be operational prior to initiating the mission. This includes resources, personnel, and equipment provided by Specialty Care Providers.

01.05.00 COMPLIANCE

There is a corporate compliance officer or designated person responsible for ensuring that the service is in compliance with external laws and regulations, payer requirements and internal policies and procedures.

01.05.01 Compliance issues may include but are not limited to:

1. Health Insurance Portability and Accountability Act (HIPAA)*
2. Federal civil statutes (False Claim Act)*
3. Balanced Budget Act of 1997*
4. Office of Inspector General (OIG) Compliance Program Guidance*
5. OIG annual work plans (hospital affiliated)*
6. Anti-kickback and Stark laws*
7. Emergency Medical Treatment and Active Labor Act (EMTALA)*
8. Red Flag Rules (Identity Theft Prevention Program) *
9. Federal sentencing guidelines
10. **Or applicable international regulations**

* (See References)

01.05.02 The compliance program includes:

1. Written policies and procedures
2. Designation of a compliance officer or assignment of responsibility to a specific individual or individuals
3. Conducting effective training and education for staff that documents both initial and continuing competency
4. Developing effective lines of communication
5. Enforcing standards through published disciplinary guidelines

6. Auditing and monitoring

7. Responding to detected offenses and developing corrective action

Examples of evidence to meet compliance:
Staff is knowledgeable about current compliance issues.

01.06.00 MANAGEMENT/POLICIES

01.06.01 There is a well-defined line of authority.

1. There is a clear reporting mechanism to upper level management. An organizational chart defines how the medical transport service fits into the governing/sponsoring institution, agency or corporation.

2. For public or private institutions and agencies that contract with an aviation or ambulance company for transport, there must be a policy that specifies the lines of authority between the medical management team and the aviation/ambulance management team.

3. All personnel understand the chain of command. Medical personnel understand that the pilot in command has ultimate authority for the aircraft and safe operations. (RW/FW)

4. Managers are oriented to national aviation regulations, Federal Aviation Regulations,(FAR’s)in the U.S. that are pertinent to the medical service, including the names and titles of each person authorized by the aviation regulator to exercise operational control.(RW/FW)

5. Managers are trained to recognize real and perceived pressures that may influence unsafe acts by staff.

6. The program adheres to state/provincial, national and/or local ambulance (air and ground) rules and regulations, including licensure requirements.

7. A policy must be in place that documents the employer’s disciplinary process and protects employees from capricious actions.

8. Management:
 a. Demonstrates strategic planning that aligns with the mission, values and vision of the service.
 b. Sets written guidelines for press-related issues and marketing activities.
 c. Sets an Emergency Response Plan that includes a PAIP and responses to unexpected occurrences involving personnel, vehicles and facilities to include helipads as appropriate to the base of operations.
 d. Requires shift briefings conducted at the beginning of each shift to assure continuity between shifts.
 e. Requires a post flight debrief is conducted after each flight, that includes the communications specialist. (RW/FW)
 f. Requires a post transport debrief is conducted after each transport or groups of transports as response readiness permits. (G)
g. Has a policy and a mechanism to track, investigate, disclose and close the loop on any medical adverse event.

Examples of evidence to meet compliance:
Business plans demonstrate a needs and risk assessment when expanding the service or adding bases that includes staffing, training and management restructuring for added responsibilities.

Examples of evidence to exceed compliance:
Management is educated to Just Culture and applies Just Culture principles throughout the organization.

01.07.00 MISSION TYPES AND PROFESSIONAL LICENSURE
THERE WILL BE AN ADDENDUM TO THIS SECTION IN 2013 THAT WILL COMPLETELY REVISE 01.07.00 TO ORGANIZE AS LEVELS OF CARE (SEE DRAFTS POSTED ON THE CAMTS WEBSITE)

Mission Types – Staffing must be commensurate with the mission statement and scope of care of the medical transport service. The aircraft or ambulance, by virtue of medical staffing and retrofitting of medical equipment becomes a patient care unit specific to the needs of the patient. A well-developed position description for each discipline is written.

01.07.01 Critical Care - A critical care mission is defined as the transport of a patient, from a scene or a clinical setting, whose condition warrants care commensurate with the scope of practice of critical care transport professionals. (i.e., physician or registered nurse)

1. The medical team must, at a minimum, consist of a specially trained physician or a registered nurse as the primary care provider.

2. A physician or registered nurse may be designated as the primary care provider if he/she meets the following criteria:
 a. There are adequate personnel to provide full coverage with physicians or RNs who are primarily assigned to the medical transport service and are readily available within the response time determined by the service.
 b. The physician or RN must have appropriate state licensure.
 c. Pre-hire qualifications require a minimum of three years critical care experience for RN’s and a plan to assess and document the competency and proficiency of the provider to perform in the critical care medical transport environment.
 d. A policy addresses pre-hire background checks that include, at a minimum, criminal background, license verification, and previous employer.

Examples of evidence to exceed compliance:
Four or more years critical care experience is required pre-hire. Nursing certifications such as CEN, CFRN, CPEN, or CCRN are required pre-hire.

3. Critical care missions require an additional team member, for a minimum of 2 medical attendants (for example, but not limited to, RN/RN, RN/RT, RN/MD, RN/Paramedic (or alternative team composition), while a patient(s) is on board. Personnel must be available for each transport within a response time determined by the service.
a. Regularly scheduled personnel must be assigned to the service as his/her primary responsibility, and must meet all appropriate and current licensing, certification or permitting requirements for Respiratory Care Practitioners or EMT-Paramedic, or higher level.

- They must meet educational requirements specific to the medical transport service environment assigned.

b. Pre-hire qualifications require a minimum of three years ALS experience for flight paramedics and three years clinical experience for an RT and a plan to assess and document the competency and proficiency of the provider to perform in the critical care medical transport environment.

c. On an emergency/unanticipated/infrequent basis, non-scheduled personnel can be added as the second team member according to the protocols of the medical transport service as long as orientation includes in-transport treatment protocols, general aircraft and ambulance safety, emergency procedures, operational policies and infection control.

d. Under certain infrequent conditions, the weight of the second medical attendant or equipment could potentially compromise the performance of the aircraft and the safety of the mission. Under these conditions, if only one medical attendant can accompany the patient, the following must occur:

- A written policy exists defining the conditions of density altitude and weight, and it supports the pilot's authority to make these decisions.
- A single medical attendant must have the knowledge and medical equipment to adequately perform one-person CPR.
- Quality management activities are in place that regularly review the patient care provided by only one medical attendant and the patient's status at the time of arrival at the arranged destination facility.
- No other transport team is available in that region at the time of the transport that would be more appropriate for delivering the level of care the patient requires.

4. **An Alternative to Current Critical Care Team Composition Requirements**: As an alternative to the team composition (for example: paramedic-led teams) requirement above, the following standard and criteria describe a new way to meet compliance with the accreditation standards as a critical care team.

(See Alternative Team Composition Requirements - Addendum A)

01.07.02 Advanced Life Support - An advanced life support (ALS) mission is defined as the transport of a patient from an emergency department, critical care unit or scene who receives care commensurate with the scope of practice of an EMT-Paramedic. (See ALS-BLS Ground Section as applicable.)

1. The medical team must at a minimum consist of one certified EMT-Paramedic as the primary care provider.

 a. There are adequate personnel to provide full coverage with EMT-Paramedics who are primarily assigned to the medical service and are readily available within the response time determined by the service (if the majority of transports are ALS missions).
2. The EMT-Paramedic providers must be licensed, certified, or permitted according to the appropriate state regulations and current relicensing, recertification, or re-permitting status.

 a. **Pre-hire qualifications require a minimum of three years ALS experience for flight paramedics.**

 b. Pre-hire background checks include criminal background, licensing, and previous employer are outlined in a policy.

Examples of evidence to exceed compliance:

Four or more years ALS experience is required pre-hire.

3. **Advanced life support missions require an additional team member, for a minimum of two medical attendants while a patient(s) is on board. Personnel must be available for each transport within a response time determined by the service.**

 a. Regularly scheduled personnel must be assigned to the service as his/her primary responsibility and must meet all appropriate and current licensing, certification, or permitting requirements for a Respiratory Therapist, EMT-Paramedic, or higher level.

 b. They must meet educational requirements specific to the medical transport service environment assigned.

 c. On an emergency/unanticipated/infrequent basis, non-scheduled personnel can be added as the second medical team member according to the protocols of the medical service as long as orientation includes in-flight treatment protocols, general aircraft safety, emergency procedures, operational policies, and infection control.

 d. Under certain conditions, the weight of the second medical person or equipment could potentially compromise the performance of the aircraft and safety of the mission. Under these conditions, if only one medical person can accompany the patient, the following must occur:

 - A policy exists defining the conditions of density altitude and weight, and it supports the pilot's authority to make these decisions.
 - A single medical attendant must have knowledge and medical equipment to adequately perform one person CPR.
 - Quality management activities are in place that regularly review the patient care provided by only one medical attendant and the patient's status at the time of arrival at the arranged destination facility.
 - No other transport team is available in that region at the time of transport that would be more appropriate for delivering the level of care the patient requires.

01.07.03 ALS/BLS Transports – refer to the ALS/BLS Ground standards. BLS no longer applies to air transports as a dedicated service although one care provider is acceptable for BLS fixed wing transports or medical escort requests.

Examples of evidence to meet compliance:

The program has guidelines for accepting a single provider transport (versus the regularly scheduled critical care or ALS team), and these transports are reviewed in the QM process.
01.07.04 Medical Escort Transports – Refer to Medical Escort Standards to be published as a separate document (draft is on the website - camts.org).

01.07.05 Independent Specialty Care Teams—Specialty transport teams that are specifically trained for air and/or ground transport and are not accompanied by a transport team or team member must follow the criteria listed under critical care.

Examples of evidence to meet compliance:

Independent specialty care teams have documented evidence of annual education in in-flight and ambulance treatment modalities, altitude physiology, general aircraft and ambulance safety, and emergency procedures. For RW/FW, they must meet educational requirements for in-flight environment (reference p. 44, education specific to the in-flight and ground transport environment).

01.07.06 Specialty personnel who are added to the regularly scheduled transport team (as for neonatal, pediatric, perinatal or IABP transports) must follow the criteria listed below:

1. Specialty care personnel must have appropriate licensure or certification requirements by appropriate agencies or governing bodies and have relevant specialty experience as described by program policy.

2. Liaison roles with the host medical transport service ensure cohesive and safe operational relationships, and well-defined roles and policies.

3. Specialty care personnel must be accompanied by one regularly scheduled medical personnel.

4. Pre-transport safety briefings are performed prior to each transport.

5. Specialty care personnel are familiar with the program’s policies, safety and survival techniques as they relate to the specific aircraft or ambulance.

01.07.07 Specialty personnel who contract with a transport service but are not accompanied by regularly scheduled team members must follow the criteria listed below. Training is documented and verified on an annual basis.

1. Specialty care personnel must be educated in in-flight and ambulance treatment modalities, altitude physiology, general aircraft and ambulance safety, and emergency procedures.

2. Specialty care personnel must complete the education specific to in-flight and ground transport environment as listed in Accreditation Standard 04.02.01

01.08.00 STAFFING

The service must have written operational policies to address each of the areas listed below:

01.08.01 Scheduling and individual work schedules demonstrate strategies to minimize duty-time fatigue, length of shift, number of shifts per week and day-to-night rotation. (See References for circadian rhythm and other fatigue studies.)

1. On-site shifts scheduled for a period to exceed 24 hours are not acceptable. Twenty-four hour shifts are acceptable if:
 a. Medical personnel are not required to routinely perform any duties beyond those associated with the transport service.
b. Medical personnel are provided with access to and permission for uninterrupted rest after daily medical personnel duties are met.

c. The physical base of operations includes an appropriate place for uninterrupted rest.

d. Medical personnel must have the right to call "time out" and be granted a reasonable rest period if the team member (or fellow team member) determines that he or she is unfit or unsafe to continue duty, no matter what the shift length. There must be no adverse personnel action or undue pressure to continue in this circumstance.

e. Management must monitor transport volumes and personnel’s use of a “time out” policy.

2. Scheduling of on-call shifts must be evaluated to address fatigue in a written policy based on monitoring of duty times by managers, QM tracking and fatigue risk management.

3. Policies for long range transports address rest during transport, after patient is at the destination and acceptance of back-haul missions. Medical personnel must have 10 hours free from all company assigned duties before accepting another mission or crews need to be swapped out.

4. Personnel (including communications specialists) must have at least ten hours of rest (pilots must have ten hours of rest as consistent with Part 135 regulations) with no work-related interruptions prior to any scheduled shift of twelve hours or more or prior to any on-call shift of greater than 12 hours. The intent is to preclude back-to-back shifts with other employment, commercial or military flying, or significant fatigue-causing activity prior to a shift.

5. The number of consecutive shifts and day to night rotation must be closely monitored by management for pilots, medical crews, communication specialists, ground ambulance drivers and aircraft maintenance personnel.

6. Policies must address minimum rest/duty time requirements for transports that are international or involve overnight stays, not to exceed more than 16 hours on duty in a 24-hour period OR a minimum of two medical team members to allow one member rest during the transport and insure another attends the patient. (FW)

7. Policies that address preparation for transport based on an available patient report and distance of transport (including international transports) to appropriately assess staffing and equipment/supplies needs.

8. Policies address crew interface so that team members are expected to stay alert on all legs of the transport, including at least one team member on empty legs, to assist the pilot in staying alert (especially in one-pilot operations) and the driver to stay alert for ground transports.

Examples of evidence to meet compliance:
Management monitors fatigue in terms of staffing patterns, patient outcomes and incidents or accidents.

01.09.00 PHYSICAL WELL-BEING

01.09.01 Physical well-being is promoted through:

1. Wellness programs that promote healthy lifestyles (e.g. balanced diet, weight control, no smoking)

2. Evidence of an injury prevention program and ergonomic strategies to reduce employee injuries

3. Protective clothing and dress code pertinent to:
a. Mission profile such as turn-out gear available at scene for medical personnel who assist with heavy extrication (RW)

b. Safe operations, which may include the following, unless specified as “required” below:

- Boots or sturdy footwear (required)
- Wearing reflective material or striping on uniforms for night operations
- High visibility reflective vests or appropriate Department of Transportation (DOT) approved clothing must be worn by flight and ground crews according to the ANSI-SEA 107 standard or equivalent national standard (required for medical crews and pilots/drivers responding to night scene requests)
- Flame retardant clothing
- Appropriate outerwear pertinent to survival in the environment (required)

4. Infection control - dress codes address jewelry, hair and other personal items of medical personnel that may interfere with patient care. Refer to Occupational Safety and Health Administration (OSHA) standards.

5. Written policies addressing:

a. Hearing protection requirements

b. Duty status during pregnancy

c. Duty status during acute illnesses such as sinusitis or otitis

d. Duty status while taking medications that may cause drowsiness

e. Weight/height and/or lifting ability as specified in pre-hire requirements

Examples of evidence to meet compliance:
Personnel are observed following the program’s dress codes and are knowledgeable about policies regarding physical well-being. Pregnancy policies are consistent with current national laws and may address notification to employer requirement, written documentation requirements to continue on duty, possible alternative duty assignments if team member is restricted from transport duty.

01.10.00 MEETINGS, RECORDS AND POLICIES

01.10.01 Meetings

1. There are formal, periodic staff meetings for which minutes are kept on file. Minutes will include who attended, base identification (if multiple bases), who is presiding and discussion (versus agenda/topics only). There are defined methods, such as a staff notebook or electronic mechanisms for disseminating information between meetings.
a. Meeting minutes (Staff, Safety, QM meetings etc.) are kept on file and maintained for a minimum of three years.

b. Minutes are dated, and personnel present are clearly identified by title (e.g., Director, RN, EMT-P, RRT).

Examples of evidence to meet compliance:
Meeting minutes indicate attendance and representation by all disciplines. Action items, timelines and area of responsibility are well documented and demonstrate a flow of information that indicates tracking, trending and loop closure.

01.10.02 Records Management ensures that patient care records, meeting minutes, policies and procedures are stored according to hospital or agency policies, and HIPAA or privacy regulations are indicative of the individual medical transport service’s sensitivity to patient confidentiality in accordance with local and national standards.

1. A record of patient care is completed, and a copy remains (electronic or other format) at the receiving facility for appropriate continuity of care.

a. A policy outlines minimal requirements based on the transport service’s scope of care

- Purpose of the transport
- History of present illness/injury, physical exam, initial vital signs as well as periodic vital signs per patient needs assessment and program’s guidelines.
- Treatments, medications, intake and output and patient’s response to treatments, procedures, and medications
- Ventilator setting and change in ventilator settings are recorded.
- Documentation of pertinent radiologic and laboratory findings on interfacility transports
- Signature of each care provider and clarity about what care was performed by each provider (administering medications and performing procedures) and indicates who actually documented patient information
- Transport facilities (to and from) and to whom report was given to at the receiving facility
- Patient condition at certain predetermined altitudes

b. A policy outlines approved abbreviations for use in patient care records. Medication abbreviations are avoided.

Examples of evidence to meet compliance:
Patient records are signed and initialed by the crew member who performed the treatment or procedure. Records are stored in a secure area that is inaccessible to the public with accessibility limited according to applicable HIPAA guidelines.

01.10.03 Policies- A policy manual is available and familiar to all personnel.
1. Policies are dated and signed by the appropriate manager(s).

2. Policies are reviewed on an annual basis as verified by dated manager’s signature on a cover sheet or on respective policies.

Examples of evidence to meet compliance:
Policies can be broken out by department/division, however, there must be signatures and revision dates on each specific policy or a cover sheet that represents annual review with respective review dates and signatures.

01.11.00 UTILIZATION REVIEW

01.11.01 Management ensures an appropriate utilization review process through trending and tracking requests. There is evidence of feedback to the requesting agents and feedback from the patients’ receiving facilities. Utilization review may be prospective, concurrent, or retrospective.

The following criteria may be considered, unless specified as “required”, but are not limited to:

1. Medical denials or requests that should have been denied for a specific transport mode (such as RW when ground would have been appropriate) are tracked and evaluated specific to the program’s scope of care and mission. (required)

2. Specialized medical transport personnel expertise and/or equipment available during transport that would otherwise not be available

3. Safety of the transport environment

4. Cost of the transport
 a. Emergency transports do not require a guaranteed payment prior to transport.
 b. Calling agents for non-emergent requests are assisted with information about the cost of the transport as well as alternative, more economical (and equally appropriate) means of transport, if available.

5. A structured, periodic review of transports (to determine transport appropriateness or that the mode of transport enhances medical outcome, safety or cost effectiveness over other modes of transport) performed at least semiannually and resulting in a written report (required for all three modes of transport)

6. The following indicators may, unless specified as “required”, trigger a review of the record to determine the medical appropriateness of the transport based upon patients:
 a. Who are discharged home directly from the Emergency Department
 b. Who are transported without an IV line or oxygen
 c. Upon whom CPR is in progress at referring location (required)
 d. Who are not transferred to and/or from a critical care unit
 e. Who are "scheduled transports" (RW)
f. Who are transported more than once for the same illness or injury within 24 hours; (required) (RW/FW/G)

g. Who are transported from the scene of injury with a trauma score of 15 or greater or fail to meet area-specific triage criteria for a critically injured trauma patient. (RW)

h. Who are treated at scene or referring hospital but not transported (required) (RW)

i. Who are not transferred bedside to bedside by the flight team (RW/FW)

j. Who are transported interfacility, and the receiving facility is not a higher level of care than the referring facility (RW)

k. Who are transported from the scene of injury to any hospital which was not the closest appropriate and available trauma center (based on regional trauma plans, if present); (RW)

l. Who are flown initially by fixed-wing and transported from the airport to the receiving facility by helicopter (RW/FW)

m. Who are ground transported with red lights and sirens (required)

n. Who are served by an inappropriate aircraft in consideration of time, distance, speed considerations, etc. (RW/FW)

o. Who are served by an inappropriate team, i.e., ALS team used but patient requires critical care skills (required)

p. Who are served by an inappropriate ambulance that met the aircraft to assume care of the patient and continue transport with the level of care, equipment and supplies appropriate to the patient’s specific needs (RW/FW)

q. Patient death during transport (required)

7. Requests that are outsourced or subcontracted must be included in each review for appropriateness. (RW/FW/G)

8. Continuity of Care - The medical service must ensure continuity of care and expeditious treatment of patients.

 a. Where appropriate, the service should promote a timely feedback to referring agency, facility or physician about patient outcome and treatment rendered before, during and after transport.

 b. Patients are only transferred to ground transport units (at sending and receiving destination) when care can be continued by the same level or higher level ground personnel as that provided by transport personnel (subject to rural capabilities and elective transport needs) and when ordered by the referring/receiving physician or medical director(s) to optimize the outcome of the patient. (RW/FW)

Examples of evidence to meet compliance:

UR reports indicate trending and loop closure of patient outcomes. Requesting agents are contacted if there are trends that indicate over-triage or under-triage. Continuous review of utilization review with applicable trending and loop closure of patient outcomes in the form of follow-up to receiving facility, documented phone calls to patient/family, etc. may
provide adequate information about patient outcome. Outliers should be presented to Case Review Committee or during regularly scheduled staff meetings to discuss specifics of transport.

Examples of evidence to exceed compliance:
There is written evidence that the program routinely provides feedback and education to requesting agents regarding inappropriate requests for the transport. Program regularly meets with representatives of the EMS region and trauma center to discuss scene transports that were both undertriaged and overtriaged.

01.12.00 QUALITY MANAGEMENT

01.12.01. The QM program has written objective evidence of actions taken in problem areas and the evaluation of the effectiveness of that action.

1. A QM flow chart diagram or comparable tool is developed demonstrating organizational structure in the QM plan and linkage to the Safety Management System.

2. The QM Program is linked with risk management, so that concerns raised through the risk management program can be followed up through the continuous quality improvement program:
 a. There is a written policy that outlines a process to identify, document and analyze sentinel events, adverse medical events or potentially adverse events (near misses) with specific goals to improve patient safety and/or quality of patient care.
 b. There is follow-up on the results of actions /goals for specific events until loop closure is achieved.
 c. The process encourages personnel to report adverse events even if it is a sole source event (only the individual involved would know about it) without fear of punitive actions for unintentional acts.

3. The QM program must be integrated and include activities related to patient care (including customer satisfaction), communications, and all aspects of transport operations and equipment maintenance pertinent to the service’s mission statement.

4. There is a written QM plan that should include but not be limited to the following components:
 a. Responsibility/assignment of accountability
 b. Scope of care
 c. Important aspects of care, including clinical outcomes
 d. Operational processes such as financial outcomes and customer needs
 e. Indicators
 f. Thresholds for evaluation, which are appropriate to the individual service
 g. Methodology - the QI process or QI tools utilized
 h. Assembly of groups to address each identified area of quality concerns that represent all disciplines involved, ensuring optimal communications and problem-solving
i. Emphasis on the quality of services offered on a continuing basis with constant attention to developing new strategies for improving; maintaining the status quo or achieving arbitrary goals are not considered the end-measures

j. Evaluation of the improvement process

Examples of evidence to meet compliance:
The QM plan is current and describes the process with evidence of loop closure in subsequent reports. **QM does not consist only of medical record reviews.**

Examples of important aspects of care may be:
- Response time on emergent transports
- Controlling life-threatening dysrhythmias
- Managing cardiac chest pain
- Managing respiratory distress
- Patient and user satisfaction
- Complete and accurate documentation of care delivered
- Efficient turnaround time in referring hospitals on emergent transfers

Other criteria may include:
- Communications among parties involved in transfer
- Facilitating transfer of patients for referring physicians
- Appropriateness of use of transport service and absence of patient/staff injuries incurred during transfer.

Indicators may also be in regard to:
- Meeting response time
- Advanced procedure success rate
- Patient or employee or referring/receiving staff satisfaction
- Periodic maintenance on medical equipment
- Communicating vehicle status
- Appropriate mode use

Documentation requirements, policy/procedure compliance, etc.

Thresholds are appropriate for the indicator and may be based on published standards/results, program historical results/goals and/or intuitive appropriateness, i.e., 100% is desired for correct referring location. However, 100% is not realistic for success on first attempt of intubation. Examples of methodologies may be sources of data such as questionnaires, databases, medical records, administrative reports, incident reports; how numerical results are calculated, fishbone diagram, six sigma, control charts, Pareto charts, flowcharts, etc.

Examples of evidence to meet compliance:
Development of business indicators that will allow the program to improve in their processes should be developed with indicators focusing on every aspect of the program (i.e. communications, clinical, aviation, safety, etc.) A flow chart outlining the process flow when outliers and how the loop is closed to ensure that each outlier was addressed. Subsequent action to trends in activity should be noted with constant evaluation of the performance improvement process (i.e., Deming Cycle; Plan Do, Study, Act). The QM plan is current and describes the process with evidence of loop closure in subsequent reports.
4. There will be regularly scheduled QM meetings providing a forum for all disciplines involved in the medical transport service.

5. The monitoring and evaluation process has the following characteristics:

 a. Driven by important aspects of care and operational practices identified by the medical transport service's QM plan

 b. Indicators and thresholds or other criteria are identified to objectively monitor the important aspects of care.

 c. Evidence of QM studies and evaluation in compliance with written QM plan

 d. Evidence of action plans developed when problems are identified through QM and communication of these plans to the appropriate personnel

 e. Evidence of reporting QM activities through an established QM organizational structure

 f. An annual summary Quality Management report is generated.

 g. Evidence of ongoing re-evaluation of action plans until problem resolution occurs

 h. Evidence of outcome studies that minimally include airway, fluid resuscitation and adherence to ACLS, PALS and NRP guidelines

 i. Evidence of annual goals established prospectively for the QM program that provide direction for the work groups and results that are measurable

 j. Emphasis is on loop closure and resolution of problems within a finite time period.

Examples of evidence to meet compliance:
QM goals may be educational, such as developing a particular subject content, revising orientation, improving the process to carry out on-going education/skills or recordkeeping; operational, such as improving a process or policy that isn’t working well, tracking of skills/advanced procedures, developing a system of how medical equipment is shared/returned among multiple bases, employee/patient/user satisfaction; clinical, such as improving medical record documentation forms/implementing or improving electronic medical records, evaluating and acquiring a new item of medical equipment, expanding medical capabilities, developing a reference or resource for team members/orientees; communications, such as improving on-going education, studying ergonomics or Communications Specialists' work stations.

6. Quarterly review must include (at a minimum, but may exceed) criteria based upon the important aspects of care/service. The following examples are encouraged:

 a. Reason for transport

 b. Mechanism of injury or illness

 c. Medical interventions performed or maintained

 d. Time of intervention consistently documented

 • Patient's response to intervention documented
- Appropriateness of interventions performed or omission of needed interventions

e. Patient’s outcome (morbidity and mortality) at the time of arrival at destination

f. Patient’s change in condition during transport

g. Timeliness and coordination of the transport from reception of request to liftoff of aircraft or ambulance enroute time

h. Safety practices

- Safety issues may be handled through the Safety Committee where a problem, incident or accident must be identified with detailed reporting and analysis of aircraft and vehicular accidents, incidents, and resolution of issues with findings and action plans reported back to the QM committee.

- QM personnel may collect data and refer to the Safety Committee for action and resolution.

i. Operational criteria to include at a minimum the following quantity indicators: with upper and lower control limits as set by the program to enhance safety and quality; not to be used for punitive measures.

- Number of completed transports with benchmarks for lift-off (lower and upper control limits – for example: lift-offs under normal conditions that are slower or faster than normal parameters). Control limits are defined by the program. Benchmarks set by the program may be longer for night-time operations.

- Number of aborted or canceled flights/transports due to weather with evidence of tracking and trending aborts/diversions for weather that interrupt or delay the patient transport and evidence of loop closure if trends are found

- Number of aborted or canceled flights/transports due to maintenance with evidence of tracking and trending aborts/diversions for maintenance that interrupt or delay the patient transport and evidence of loop closure if trends are found

- Number of aborted and canceled flights/transports due to patient condition and use of alternative modes of transport

j. In addition, the communications center or organization must monitor and track (at a minimum but may exceed):

- IFR/VFR (RW/FW)

- Weather at time of request and during transport if changes occur (RW/FW)

- Request acceptance to lift off times (RW/FW)

- All aborted and cancelled transport requests – times, reasons and disposition of patients as applicable
01.12.02 For both QM and utilization review programs, there should be evidence of reporting of results through established organizational structure to the service’s sponsoring institution(s) or agency (if applicable). For both QM and utilization programs, there is direct integration of the medical transport service’s activities with the sponsoring institution or agency (if applicable).

Examples of evidence to meet compliance:
Outcomes from QM should drive education and training needs. Systems improvement tools are educational. The process is not punitive.

Tracking and trending lift–off times, response times and times on scene or at the referring/receiving hospital are evaluated in terms of benchmarks set by the program in order to evaluate the effectiveness of policies/procedures, training and/or equipment needs.

If flights are delayed, reasons for delays or referrals are tracked as are transport requests that are conducted by an alternative means of transport (within the same program) such as FW or ground ambulance is used although RW was requested.

02.00.00 - PATIENT CARE

02.01.00 MEDICAL DIRECTION
The medical director(s) of the program is a physician who is responsible and accountable for supervising and evaluating the quality of medical care provided by the medical personnel. The medical director ensures, by working with the clinical supervisor and by being familiar with the scope of practice of the transport team members and the regulations in which the transport team practices, competency and currency of all medical personnel working with the service.

02.01.01 The medical director(s) must be licensed and authorized to practice in the location in which the medical transport service is based and have educational experience in those areas of medicine that are commensurate with the mission statement of the medical transport service (i.e., adult trauma, pediatric, neonatal transport, etc.) or utilize specialty physicians as consultants when appropriate.

02.01.02 The medical director(s) must have experience in both air and ground emergency medical services and must have education as a medical director (see Education Matrix) as appropriate to the mission statement and be familiar with the general concepts of appropriate utilization of air and ground interfacility services. In addition, the medical director must be current and demonstrate competency or provide documentation of equivalent educational experiences directed by the mission statement and scope of care. Certifications are required as pertinent to the program’s scope of care. If a physician is Board certified in an area appropriate to the mission and scope of the service, certifications #1., 2., 11., and 13. are optional.

1. Advanced Cardiac Life Support (ACLS) according to the current standards of the American Heart Association or approved equivalent

2. Advanced Trauma Life Support (ATLS) according to the current standards of the American College of Surgeons or approved equivalent

3. Altitude physiology/stressors of flight if involved in rotor wing or fixed wing operations (RW/FW)

4. Appropriate utilization of medical/ground interfacility services

5. Emergency Medical Services
6. Ground ambulance rules/regulations/driver safety course (G)

7. Hazardous materials recognition and response

9. Infection control

10. “Just Culture” or equivalent education is strongly encouraged. (See References)

11. Neonatal Resuscitation Program (NRP) according to the current standards of the American Academy of Pediatrics (AAP) and the American Heart Association (AHA)

12. Patient care capabilities and limitations (i.e., assessment and invasive procedures during transport)

13. Pediatric Advanced Life Support (PALS) according to the current standards of the American Heart Association (AHA) or Advanced Pediatric Life Support (APLS) according to the current standards of the American College of Emergency Physicians (ACEP) or national equivalent

14. Stress recognition and management

15. Sleep deprivation, sleep inertia, circadian rhythms and recognizing signs of fatigue

16. The medical director must demonstrate continuing education in transport.

02.01.03 The medical director(s) is actively involved in the quality management (QM) program for the service.

02.01.04 The medical director(s) is actively involved in administrative decisions affecting medical care for the service.

02.01.05 The medical director sets and reviews medical guidelines for current accepted medical practice, and medical guidelines are in a written format.

02.01.06 The medical director(s) is actively involved in the hiring process, training and continuing education of all medical personnel for the service.

02.01.07 The medical director(s) is actively involved in the care of critically ill and/or injured patients.

02.01.08 The medical director receives safety and risk management training on an annual basis (strongly encouraged) such as Threat and Error Management training or equivalent (see References).

Examples of evidence to meet compliance:
There is evidence of the medical director’s involvement with the program through meeting attendance records, education records, chart reviews etc.

Examples of evidence to exceed compliance:
Medical Director(s) attends TEM and Just Culture training and achieves advanced transport management certifications such as Certified Medical Transport Executive.

02.01.09 The medical director(s) is actively involved in orienting physicians providing on-line (in-transport) medical direction according to the policies, procedures and patient care protocols of the medical transport service.
02.01.10 Specific policies must address diseases affected by altitude with maintenance of adequate oxygen saturation and treatment of oxygen desaturation. There is a mechanism to assure transports can be accomplished with the oxygen supply that is available according to patient needs and transport distances. Volume expansion in hollow organs must also be addressed. Policies will be consistent with principles of aeromedical physiology. (RW/FW)

02.01.11 The medical director(s) ensures that ground transport is appropriate and safe for the patient’s specific disease process/needs. (For example: patients requiring use of a hyperbaric chamber are usually transported by ground, but in some geographic locations, the distance would be prohibitive for ground transport.)

02.01.12 The medical director(s) must set a policy that insures compliance with federal EMTALA regulations. This policy must address bedside-to-bedside care for ALS and Critical Care Providers to prevent any diminution in level of care. The policy must also address situations where it may not be necessary to proceed from bedside to bedside with the patient. These incidents must be examined by the QM process.

02.01.13 The medical director should maintain open communications with referring and accepting physicians and be accessible for concerns expressed by referring and accepting physicians regarding controversial issues and patient management.

02.01.14. Medical Control

1. Medical Control Physicians—On-line medical control physicians who are trained and identified by the service must have the appropriate knowledge base and experience sufficient to ensure proper medical care and medical control during transport for all patient types served by the medical transport service.

2. If the medical control physician’s experience is lacking in a clinical area, he or she must seek prompt consultation as appropriate to ensure proper medical care and medical control during transport for all patient types served by the medical transport service. This consultant should be an appropriate designated physician or the patient’s receiving attending physician.

3. Written policies and procedures indicate what therapies can be performed without on-line medical direction.

4. Medical control physicians are provided with triage guidelines to determine appropriate transport mode and team composition and on-scene triage guidelines developed and accepted by the specific EMS region. See References. (RW)

 a. Triage guidelines may include provisions for auto launch*. If so, there must be a policy and evidence of review in the quality management process. (RW)

*(See Glossary for definition of auto launch.)

Examples of evidence to meet compliance:
There is a formal outline and names and dates of medical control physicians who have completed this training. There is a formal medical control schedule in place and crews are aware of who to call and how to call (i.e., through Communications Center, etc.) in the event Medical Control is required. Additionally, formal names and documentation of respective training for all physicians considered medical control should be on file at the program with evidence of said training readily available for review.

Examples of evidence to exceed compliance:
The medical director is involved in EMS on a regional and/or national basis. The medical director participates in peer-reviewed published research regarding medical transport.
02.02.00 CLINICAL CARE SUPERVISOR

Clinical Care Supervisor—Responsibility for supervision of patient care provided by the various clinical care providers (i.e., EMT-B, EMT-P, RT, RN, RCP, etc.) must be defined by the service. All patient care personnel must be supervised by someone knowledgeable and legally enabled to perform clinical supervision. The clinical care supervisor and medical director(s) must work collaboratively to coordinate the patient care delivery given by the various professionals and to review the overall system for delivery of patient care.

02.02.01 The clinical supervisor is actively involved in the QM/QA/PI of the program.

02.02.02 The clinical supervisor is actively involved in all administrative decisions affecting patient care.

02.02.03 The clinical care supervisor is actively involved in hiring, training and continuing education for all personnel who work for the service.

02.02.04 The clinical care supervisor must ensure adequate mechanisms for the evaluation of clinical practice of patient care providers.

02.02.05 The clinical care supervisor must demonstrate currency in the following or equivalent educational experiences as appropriate to the mission statement and scope of care and/or the clinical care supervisor must have immediate access to personnel with appropriate knowledge and experience as consultants.

1. Advanced Cardiac Life Support (ACLS) according to the current standards of the American Heart Association. or equivalent

2. Auditing of Advanced Trauma Life Support (ATLS) according to the current standards of the American College of Surgeons or Transport Nurse Advanced Trauma Course (TNATC) according to the standards of the Air & Surface Transport Nurses Association or equivalent

4. “Just Culture” or equivalent education is strongly encouraged.

5. Neonatal Resuscitation Program (NRP) according to the current standards of the American Academy of Pediatrics and the American Heart Association. NRP is a required certification if medical personnel care for high-risk OB patients. or neonatal patients.

6. Pediatric Advanced Life Support (PALS) or Advanced Pediatric Life Support (APLS) according to the current standards of the American Heart Association. or equivalent

7. Patient care capabilities and limitations during transport (i.e., assessment and invasive procedures)

8. Infection control

9. Stress recognition and management

10. Altitude physiology/stressors of flight if involved in rotorwing or fixed wing operations (RW/FW)

11. Appropriate utilization of medical/ground interfacility services (G)

12. Emergency Medical Services
13. Hazardous materials recognition and response

14. Sleep deprivation, sleep inertia, circadian rhythms and recognizing signs of fatigue

15. Safety and risk management training on an annual basis (strongly encouraged) such as Threat and Error Management (TEM) training or equivalent

Examples of evidence to exceed compliance:
The clinical supervisor attends TEM and Just Culture training and achieves advanced certifications such as CEN, CCRN, CFRN, RNC, CTRN, and/or CMTE.

02.03.00 PROGRAM MANAGER
The program manager may have overall responsibility for a program or for a specific base with or without additional clinical responsibilities. (Follow criteria above if clinical responsibilities are part of the position description.)

02.03.01 The program manager must demonstrate currency in the following or equivalent educational experiences as appropriate to the mission statement and scope of care. Didactic education initially and on an annual basis must include but not be limited to:

2. “Just Culture” or equivalent education is strongly encouraged.

3. Sleep deprivation, sleep inertia, circadian rhythms and recognizing signs of fatigue

4. Stress recognition and management

5. Safety and risk management training on an annual basis (strongly encouraged). i.e. Threat and Error Management training or equivalent.

6. Quality Management, QM/QA/PI of the program and its implication to best practices

7. Knowledge of FAR’s or national aviation authority’s regulations as well as local and regional ground ambulance regulations as appropriate to scope of care

Examples of evidence to exceed compliance:
The program manager attends TEM and Just Culture training and achieves advanced certifications such as Certified Medical Transport Executive (CMTE).

02.04.00 ORIENTATION, TRAINING, AND CONTINUING EDUCATION PROGRAM REQUIREMENTS
A planned and structured program must be required for all regularly scheduled critical care and ALS providers. Competency and currency in these competencies must be ensured and documented through relevant continuing education programs/certification programs or their equivalent listed in this section.

02.04.01 The orientation, training and continuing education must be directed and guided by the transport program’s scope of care and patient population, mission statement and medical direction. A written education plan is required and updated on an annual basis. There is an Education Coordinator or an employee designated to track and trend education requirements.

1. Initial training program requirements for all full-time and part-time Critical Care and ALS Providers: each
Critical Care and ALS provider must successfully complete a comprehensive training program or show proof of recent experience/training in the categories listed below prior to assuming independent responsibility.

a. Pre-hire qualifications must include requiring experience relevant to the program’s scope of care and patient population(s).

b. Initial and ongoing training need not be absolutely equivalent depending on roles in patient care for different providers as defined by the program and/or state regulations, but training must have basic equivalencies. Both medical personnel members need to be didactically trained. (For example, a paramedic or nurse may not be allowed to do a procedure by regulation, but that provider needs to be familiar with the steps in the procedure in order to assist the other provider in the performance of that procedure.)

c. Didactic Component of Initial Education must be specific and appropriate for the mission statement and scope of care of the medical transport service. Measurable objectives need to be developed and documented for each experience. The transport program will provide a basic outline of initial education that is not limited to, but must include:

- Advanced airway management
- Altitude physiology/stressors of flight (RW/FW)
- Anatomy, physiology and assessment for adult, pediatric and neonatal patients as outlined within the program’s scope of care and patient population. (For example, if the program’s scope of care includes all age groups of patients, then the anatomy, physiology and assessment of neonates, pediatric and adult patients must be included.)
- Ambulance orientation/safety and procedures as appropriate
- Cardiac emergencies and advanced cardiac critical care
- Didactic education that is mission specific and specific to scope of care and patient population, for example:
 - Burn Emergencies (thermal, chemical and electrical)
 - Compliance issues and regulations
 - Disaster and triage
 - EMS radio communications
 - Environmental emergencies
 - Equipment education – airway, breathing and circulation equipment, defibrillators, pacemakers, monitors, IABP etc.
 - Hemodynamic monitoring devices (such as pacemakers, automatic implantable cardiac defibrillator (AICD), intra-aortic balloon pump, central lines, pulmonary artery and arterial catheters, ventricular assist devices and extracorporeal membrane oxygenation (ECMO) as appropriate to program’s scope of care
- High risk obstetric emergencies defined as "A transport that is directly related to pregnancy that may endanger the mother or fetus of a gestational age greater than 20 weeks. This does not include pre-existing conditions or trauma in the pregnant patient." (Specific training guidelines can be found in References.)

- Highway scene safety management (RW)

- Human Factors – Crew Resource Management – AMRM (Air Medical Resource Management)*

- Infection control

- "Just Culture" or equivalent education is strongly encouraged.

- Mechanical ventilation and respiratory physiology for adult, pediatric and neonatal patients as appropriate to the mission statement and scope of care of the medical transport service specific to the equipment

- Metabolic endocrine emergencies

- Multi-trauma (chest, abdomen, facial).

- Neonatal emergencies (respiratory distress, surgical, cardiac.) (Reference definitions and specific training guidelines.)

- Oxygen quality controls include: hazard awareness, how to read cylinder levels, basic understanding of Compressed Gas Association (CGA) connections; how to safely transport liquid oxygen cylinders (if utilized) and knowledge of cylinder durations as per local and national regulations. (FDA Section 211.25(a) and NFPA 53M)

- Pediatric medical emergencies

- Pediatric trauma

- Pharmacology

- Quality Management – didactic education that supports the medical transport service’s mission statement and scope of care

- Respiratory emergencies

Examples of evidence to exceed compliance:

TEAMSTEPPS and LEAN are examples of processes that provide teamwork, root cause analysis and problem solving. (See References)

- Safety and risk management training (strongly encouraged) such as Threat and Error Management training or equivalent

- Scene management/rescue/extrication
Sleep deprivation, sleep inertia, circadian rhythms and recognizing signs of fatigue

State EMS rules and regulations (Province or Government) rules regarding ground and air transport

Stress recognition and management

Transport vehicle orientation/safety & in-transport procedures/general vehicle safety including all types of vehicles the team may be exposed to including depressurization procedures for fixed wing (as appropriate) *

Toxicology

*(See References for in-flight fire warnings from laptop battery failures and other high energy batteries.)

d. Clinical Component of Initial Training– Clinical experiences will be based on the program’s mission, scope of care and patient population. Measurable objectives need to be developed and documented for each experience listed below reflecting hands-on experience versus observation only. If simulation teaching/learning modalities are used as an adjunct to or substitution for clinical experiences, there must be documentation that the learning objectives were met. A four step process (found in the Education Matrix) provides guidelines to submit simulation education for approval by CAMTS). Simulation modalities may include the use of dynamic human patient simulators, standardized patients (trained medical actors), computerized interactive devices, virtual reality and serious gaming. Examples can be found in references. The following areas will be included for the scope of practice areas in which the team transports.

- Critical Care (adult, neonatal, pediatric)
- Emergency care (adult, neonatal, pediatric)
- Invasive procedures on mannequin equivalent for practicing invasive procedures. An approved mannequin or simulator may be used. (See Education Matrix for guidelines for use of a mannequin and HPS.)
 - Neonatal intensive care
 - Obstetrics
 - Pediatric critical care
 - Pre-hospital care
 - Tracheal intubations

e. Since airway management is an essential life-saving measure, and endotracheal intubation is an important aspect of airway management, the initial education and training must include no less than 5 live (animal labs are also acceptable) cadaver or dynamic Human Patient Simulator (HPS) experience specific to age groups in program’s scope of care and patient population. An experienced transport
team member may show documentation that demonstrates this requirement has been previously met. Both crewmembers must be trained in airway management although license or state regulations may dictate who is allowed to intubate before and during transport. All intubations (successful or unsuccessful) must be documented and evaluated in the program’s PI/QA/QM program. (See Education Matrix for guidelines regarding use of an HPS)

f. Alternative airway management will be included for all transport team members. Alternative airways must be selected and utilized based on the mission and scope of practice of the transport team. For example, a combitube is not appropriate for a neonatal team, but a laryngeal mask airway (LMA) may be.

2. Continuing education/staff development must be provided and documented for all full-time and part-time Critical Care and ALS Providers. These must be specific and appropriate for the mission statement and scope of care of the medical transport service.

 a. Didactic continuing education must include an annual review of:

 - Human factors – Crew Resource Management - AMRM (Air Medical Resource Management) (See References)
 - Infection control
 - “Just Culture” or equivalent education is strongly encouraged.
 - Sleep deprivation, sleep inertia, circadian rhythms and recognizing signs of fatigue
 - State EMS rules and regulations regarding ground and air transport
 - Stress recognition and management
 - Safety and risk management training on an annual basis (strongly encouraged) such as Threat and Error Management training or equivalent

 b. Clinical and laboratory continuing education must be developed and documented on an annual basis as pertinent to scope of care to follow. If simulation teaching/learning modalities are used as an adjunct to or substitution for clinical experiences, there must be documentation that the learning objectives were met. Simulation may include the use of dynamic human patient simulators, standardized patients (trained medical actors), computerized interactive devices, virtual reality and serious gaming. Examples can be found in references.

 - Critical care (adult, pediatric, neonatal)
 - Emergency/trauma care
 - Invasive procedure labs
 - Labor and delivery
 - Skills maintenance program documented to comply with number of skills required in a set period of time according to policy of the medical transport service (i.e., endotracheal
• intubations, chest tubes)
 o Since airway management is an essential life-saving measure, and endotracheal intubation is an important aspect of airway management, no less than 1 successful live, cadaver, HPS or mannequin intubation per quarter is required for each Critical Care or ALS Provider.
 o Live, mannequin or cadaver intubation experience within the scope of practice served by the medical transport service: i.e., neonates less than 28 days; children 2 to 8 years of age and adult

3. Competencies- Policies ensure that clinical competency is maintained by currency in the following or equivalent training as appropriate for the position description, mission statement, and scope of care of the medical transport service. The Education Matrix – Addendum B, contains a listing of the current national and international courses that are available for educational preparation of transport crews and is intended to assist in the determination of compliance with the standards. In addition, the supporting associations are listed. These associations have websites where additional information can be obtained.

There are other courses that have been developed by programs, hospitals, local and state agencies that may be used to meet educational requirements such as the Critical Care Paramedic Course (CC-EMT). No matter what is chosen, a national course as listed below or a locally-developed course, specific objectives, content outlines and measurable outcomes need to be included in what is developed and must be submitted to CAMTS as an attachment to the PIF application and must include primary and secondary assessment, advanced physiology and advanced skills. Trauma competency equivalents are noted in the Education Matrix. Courses offered outside the U.S. should mirror the courses below and must be submitted with an accreditation application.

 a. Basic Life Support (BLS) - documented evidence of current BLS certification according to the American Heart Association (AHA) Health Care Provider course.
 b. Advanced Cardiac Life Support (ACLS) - documented evidence of current ACLS according to the AHA or equivalent (not required for neonatal teams who do not provide adult care)**
 c. Advanced Trauma Life Support (ATLS) according to the American College of Surgeons, ATLS audit, ATLS for Nurses or Transport Nurse Advanced Trauma Course (TNATC) or equivalent (not required for neonatal teams who do not provide adult care)** Education developed by the program as an equivalent must be submitted to the CAMTS Education Committee for pre-approval.
 d. Pediatric Advanced Life Support (PALS) or Advanced Pediatric Life Support (APLS) according to the AHA and ACEP, or equivalent education.
 e. Neonatal Resuscitation Program (NRP) according to the current standards of the American Academy of Pediatrics and the American Heart Association or equivalent. NRP is a required certification if medical personnel care for high-risk OB and/or neonatal patients.
 f. Nursing certifications (such as CEN, CCRN, RNC, CFRN and CTRN) pertinent to scope of care and patient population are required for nurses who have been employed for more than 2 years. For teams that transport pediatric (requiring specialized care in a PICU) and/or neonatal patients, CNPT or ACCS is strongly encouraged.
 g. Current paramedic certifications (such as NREMT-P) strongly encouraged for paramedics who have been employed for more than 2 years and are conducting ALS/BLS and critical care transports. In
addition, FP-C or CCP-C certifications required for paramedics who conduct critical care transports and have been employed for more than 2 years.

h. Respiratory therapists’ certifications (such as RRT and NPS) are strongly encouraged. If required in position descriptions, certifications must be current. For pediatric and neonatal teams, CNPT or ACCS is strongly encouraged.

Examples of evidence to meet compliance:
Initial and ongoing education is tracked and documented that includes certifications, currencies and clinical experiences. If education and clinical experiences are obtained outside the program (or by the same employer, but different department) these are documented.

Examples of evidence to exceed compliance:
TEM and Just Culture courses are completed by more than 50% of the staff. Nursing and paramedic certifications are required and current for all staff.

4. Independent Specialty Care Providers

a. Education requirements for Independent Specialty Care Providers Education requirements will be similar to the initial training program for Critical Care and ALS Providers (Didactic and Clinical Components) and specific for the specialty area (i.e., neonatal vs. pediatric).

b. Continuing education must be provided and documented for specialty care providers and must be specific and appropriate for the mission statement and scope of care of the medical transport service:

- Didactic continuing education programs specific to the specialty
- Ongoing clinical experiences specific to the specialty
- Clinical competency must be maintained by currency in specialty education required by position description (i.e., American Heart Association/American Academy of Pediatrics, or Pediatric Advanced Life Support pertinent to appropriate specialty) or equivalent.

02.05.00 MEDICAL CONFIGURATION OF THE AIRCRAFT/AMBULANCE

Any in-service aircraft/ ambulance must be configured in such a way that the medical transport personnel can provide patient care consistent with the mission statement and scope of care of the medical transport service. Patient care issues are considered when choosing the aircraft or ground transport.

02.05.01 Configuration of the aircraft/ambulance interior must not compromise the ability to provide appropriate care or prevent providers from performing emergency procedures if necessary.

02.05.02 Medical transport personnel have access to the patient in order to begin and maintain basic and advanced life support treatment.

02.05.03 The aircraft/ambulance configuration allows for stabilizing the patient’s airway and childbirth procedures if that is part of the service’s mission.

02.05.04 The service’s mission and ability to transport two or more patients must not compromise the airway or stabilization or the ability to perform emergency procedures on any on-board patient.
1. The aircraft/ambulance must have access for simultaneous airway management if there is a two-patient configuration.

2. For all transports, there are written guidelines describing types of patients that can be transported in a two patient stretcher configuration if the aircraft/ambulance configuration does not allow for full access to the second patient.

3. For all transports, strict policies will address weight limitations, patient condition based on anticipated needs, and patient position in the aircraft/ambulance.

4. Policies will be written and adhered to for one or more patient transports if the interior configuration of the aircraft/ambulance does not allow for uninhibited access to one or more patients while enroute. Policies will address under what circumstances two critical patients may or may not be transported, including staffing and equipment.

5. A policy prohibits dual patient transport inside the same isolette unless the situation is conjoined twins. (RW/FW/G)

02.05.05 Airway and alternate airways - There must be access and necessary space to ensure any on-board patient's airway is maintained and to provide adequate ventilatory support from the secured, seat-belted position of medical transport personnel.

1. It is strongly encouraged that seating be designed in the ground ambulance so that patient care can be rendered from a seat-belted position. Shoulder harnesses on side facing bench seats must not be used. (See References) (G)

02.05.06 Delivering Oxygen - Oxygen is installed according to national and international aviation and ground ambulance regulations. Medical transport personnel can determine how oxygen is functioning by pressure gauges mounted in the patient care area.

1. Each gas outlet is clearly identified.

2. Oxygen flow can be stopped at or near the oxygen source from inside the aircraft or ambulance.

3. The following indicators are accessible to medical transport personnel while enroute:
 a. Quantity of oxygen remaining
 b. Measurement of liter flow

4. A variety of oxygen delivery devices consistent with the service's scope of care must be available.

5. Adequate amounts of oxygen for anticipated liter flow and length of transport with an emergency reserve must be available for every mission.

 a. For those flights meeting the definition of “long range” (any patient leg in excess of 3 hours measured in time, not distance, because of winds where there are no alternative capabilities for
patient care needs or aviation operations) additional policies must be in place to address the following:

- Ability to obtain oxygen when away from the base
- Adequate/require fittings, connections, tools, and appliances for servicing the oxygen
- Adequate crew training to meet FAA or equivalent oxygen servicing regulations

6. An appropriately secured portable oxygen tank with a delivery device must be carried on the aircraft/ambulance so that oxygen delivery is not disrupted when transferring the patient to a hospital or other receiving facility. A portable oxygen tank is never to be secured between patient’s legs or immediately adjacent to the patient while aircraft or ambulance is in motion.

7. There must be a backup source of oxygen of sufficient quantity to get safely to a facility for replacements in the event the main system fails. For air transports, this backup source can be the required portable tank as long as the portable tank is accessible in the patient care area during flight. For those flights meeting the definition of “long range”, additional policies must be in place to address how additional portable oxygen can be obtained if planned ground transport times are exceeded.

8. There is appropriate storage of oxygen in the facility according to national health and safety (in the U.S.OSHA standards).

9. Oxygen flow meters and outlets must be padded, flush mounted, or so located to prevent injury to medical transport personnel, patients or passengers.

02.05.07 Maintaining IV Fluids

1. IV supplies and fluids are readily available.

2. Hangers/hooks are available that secure IV solutions in place or a mechanism to provide high flow fluids if needed.

3. All IV hooks are padded, flush mounted, or so located to prevent head trauma to the medical transport personnel in the event of a hard landing in the aircraft or emergency stop/maneuver of the ambulance.

4. Glass IV containers are not used unless required by specific medications and are properly secured.

5. A minimum of three IV infusion pumps are on the aircraft/ambulance or immediately available for critical care transports and as appropriate to the scope of care.

02.05.08 Medications consistent with the service’s scope of care are accessible.

1. The transport service has a method of assuring that all medications and intravenous fluids are appropriately calculated. Examples of effective methods include the use of drug calculation lists, internet based programs and pre-programmed drug delivery systems such as those found in medication pumps.

2. Medications are easily accessible.

3. Controlled substances are in a locked system and kept in a manner consistent with local and national regulations.
a. For services that transport medications between bases, a policy exists that assures safe and secure transport of medications between bases that is consistent with state and/or national laws. In the U.S., there is a DEA license required for each base that stores and dispenses narcotics. A hospital pharmacy that stocks controlled substances for various locations needs a terminal distribution license, for example.)

4. Storage of medications allows for protection from extreme temperature changes if environment deems it necessary.

5. If there is a refrigerator on the vehicle for medications, a temperature monitoring and tracking policy is required and the refrigerator is used and labeled “for med use only”.

6. There is a method to check expiration dates of medications and supplies on a regular basis.

02.05.09 Medical supplies and equipment must be consistent with the service’s mission statement and scope of care. Additionally, the following equipment must be on the aircraft/ambulance and available for all Critical Care or ALS Providers.

1. Cardiac monitoring capabilities:

 a. Cardiac monitor, defibrillator and external pacemaker are secured and positioned so that displays are visible.

 b. Extra batteries or power source are available for cardiac monitor/defibrillator or external pacemaker.

2. Defibrillator:

 a. Defibrillator is secured and positioned for easy access.

 b. Semiautomatic or automatic external defibrillator may be required for some BLS Providers (where permitted as scope of care for EMT-B).

 c. Pediatric paddles/pads available if applicable to the scope of care of the medical transport service

 d. A defibrillator with appropriate size pads and settings must be available for neonatal transports (if neonatal transports are conducted).

3. External pacemaker on-board or immediately available as a carry-on item.

4. Advanced airway and ventilatory support equipment:

 a. Laryngoscope and tracheal intubation supplies, including laryngoscope blades, bag-valve-mask and oxygen supplies, including PEEP valves; appropriate for ages and potential needs of patients transported

 b. A mechanical ventilator and circuit appropriate to age and scope of care must be on board for critical care transports as pertinent to the scope of care of the medical transport service.

 c. Equipment for alternative airways must be on board transport vehicles at all times and protocol for management of missed airway attempts.
d. Two suction units, one of which is portable and both of which must be required to deliver adequate suction

e. Pulse oximetry on-board for critical care missions or immediately available for ALS

f. End-tidal CO2 continuous wave-form monitoring capabilities available

g. If inhaled nitric oxide or other inhaled gases are used, policies address the following:
 - Monitoring
 - Cylinder safety
 - Transportation regulations
 - Occupational exposure
 - Equipment issues
 - Weight
 - Mounting in the vehicle
 - Delivery of the drug
 - Emergency procedures (for example troubleshooting for battery failure, delivery fault, system failure)

5. Automatic blood pressure device, sphygmomanometer, doppler or arterial line monitoring capability on-board or immediately available

6. Devices for decompressing a pneumothorax and performing an emergency cricothyroidotomy available if applicable to scope of care of the medical transport service

7. Fetal (Doppler heart rate) monitoring is required for high risk OB transports.

8. Blood Products

 a. For services who administer blood, there must be a policy addressing:
 - Determination of when the blood product was released from the Blood Bank. Blood must be maintained at a controlled temperature of 2 - 8 degrees C during transport and must be infused within 4 hours of removal from thermal control. The temperature of the cooling mechanism is monitored and recorded.

 - How the blood will be verified to match the patient including at least two health care providers in the process
• Documentation of type of blood product, type, quantity, time it was started and stopped, Unit #, amount infused during the transport and whether or not a reaction occurred

• Procedure to follow if a suspected or actual transfusion reaction occurs

• Policy on disposition of unused blood.

b. If blood products are stored by the service, policy addresses:

• Proper storage conditions (Red blood cell products 1-6 degrees Centigrade)

• Continuous monitoring and documentation of refrigerator temperature readings to ensure it is in range, including an audible alarm mechanism if temperature falls out of range

• Daily checks and documentation of the monitoring equipment and automatically recorded temperature readings

• Procedure to follow if temperature falls out of range

c. The program has a written agreement with a certified blood bank.

References:
Standards for Blood Banks and Transfusion Services, 25th Ed., 2008

02.05.10 The aircraft/ambulance design and configuration must not compromise patient stability in loading, unloading or in-flight operations.

1. The aircraft/ambulance must have an entry that allows loading and unloading without excessive maneuvering (no more than 45 degrees about the lateral axis and 30 degrees about the longitudinal axis) of the patient, and does not compromise functioning of monitoring systems, intravenous lines, and manual or mechanical ventilation.

2. There is a written policy on conducting CPR during transport.

3. A minimum of one stretcher must be provided that can be carried to the patient.

 a. Aircraft stretchers and the means of securing it in-flight must be consistent with national aviation regulations. Ambulance stretchers must comply with state and national laws.

 b. Policy indicates the maximum gross weight allowed on the stretcher (inclusive of patient and equipment) as consistent with manufacturer’s guidelines.

 c. The stretcher must be large enough to carry the 95th percentile adult patient, full length in the supine position. (Estimated 95th percentile adult American male is 6 ft. and 232 lbs. and may differ internationally)

 d. The stretcher must be sturdy and rigid enough that it can support cardiopulmonary resuscitation. If a backboard or equivalent device is required to achieve this, such device will be readily available.
• The head of the stretcher is capable of being elevated at least 30 degrees for patient care and comfort.

• If the ambulance stretcher is floor-supported by its own wheels, there is a mechanism to secure it in position under all conditions. These restraints permit quick attachment and detachment for patient transfer.

4. Securing the patient:
 a. Patients transported by air are restrained with a minimum of three cross straps. Cross straps are expected to restrain the patient at the chest, hips and knees.
 b. Patients that are loaded head forward must additionally be restrained with a shoulder harness restraint. (RW/FW)
 c. Belt locations must be adjustable along the length of the stretcher to accommodate patients’ specific medical situations, for example, pregnant patients or specific injury locations.
 d. Patients under 40 pounds (18 kg.) must be provided with an appropriately sized restraining device (for patient’s height and weight), which is further secured by a locking device.

5. Securing Equipment
 a. Isolette:
 • There must be some type of restraining device within the isolette to protect the infant (under 10 pounds or 4.5 kg) in the event of air turbulence or poor road conditions.
 • Isolette must be capable of being opened from its secured position in order to provide full access to the infant in the event of complicated airway problems or extrication from the isolette becomes necessary.

b. Medical equipment will at no time share a seatbelt intended for patient being secured to the stretcher. (head, side rails, or between/beneath/top of the patients legs)

c. Ancillary equipment (chargers, battery packs, etc.) must be secured to prevent becoming a projectile in the event of turbulence or a crash.

d. Velcro is not to be used as a primary or exclusive securing device for medical equipment or ancillary devices.
e. If straps or belts are used to secure equipment, they must be rated to keep the weight and configuration in place to a minimum of 5g’s.

f. Rated cargo nets are strongly preferred over individual straps or belts to secure equipment bags.

02.05.11 Supplemental lighting system will be installed in the aircraft/ambulance in which standard lighting is insufficient for patient care.

1. A self-contained lighting system powered by a battery pack or a portable light with a battery source must be available.

2. There must be adequate lighting for patient care: Use of red lighting or low intensity lighting in the patient care area is acceptable if not able to isolate the patient care area from effects on the cockpit or on a driver.

3. For those flights meeting the definition of “long range”, additional policies must be in place to address how adequate cabin lighting will be provided during fueling and or technical stops to ensure proper patient assessment can be performed and adequate patient care provided.

02.05.12 Electric power outlet must be provided with an inverter or appropriate power source of sufficient output to meet the requirements of the complete specialized equipment package without compromising the operation of any electrical aircraft/ambulance equipment. Extra batteries are required for critical patient care equipment.

02.05.13 Medical transport personnel must ensure that all medical equipment is in working order and all equipment/supplies are validated through documented checklists for both the primary and backup aircraft/ambulance.

1. Equipment must be periodically tested and inspected by a certified clinical engineer.

2. Equipment inspections and records of inspections are maintained according to the program’s guidelines.

3. For long range transports, adequate back-up battery supply must be available to ensure all medical equipment remains functional during technical stops, should a power failure exist, etc.

02.05.14 The floor, sides and ceiling in the patient cabin of the aircraft or ambulance must be a surface capable of being cleaned and disinfected in accordance with national health and safety regulations with the appropriate disinfectant.

02.05.15 The interior of the aircraft must be climate controlled to avoid adverse effects on patients and personnel on board. (RW/FW/G)

1. Cabin temperatures must be measured and documented every 15 minutes during a patient transport until temperatures are maintained within the range of 50 – 95 degrees F (10 - 35 degrees C) for aircraft and range of 68-78 degrees F (20-25.5 degrees C) for ground vehicles. Thermometer is to be mounted inside the cabin.

2. The program has written policies that address measures to be taken to avoid adverse effects of temperature extremes on patients and personnel on board.

3. In the event cabin temperatures are less than 50 degrees F or greater than 95 degrees F, the program will require documentation be red flagged for the QM process to evaluate what measures were taken to mitigate adverse effects on the patient and crew and what outcomes resulted.
4. For those flights meeting the definition of “long range”, additional policies must be in place to address how adequate cabin temperature will be maintained during fueling and or technical stops to ensure patient, crew and passenger comfort.

Examples of evidence to meet compliance:
Cabin temperatures, tracking, trending and measures to mitigate adverse effects are expected to be documented as part of the QM process – not necessarily part of the patient’s record.

02.06.00 INFECTION CONTROL
Policies and procedures addressing patient transport issues involving communicable diseases, infectious processes and health precautions for emergency personnel as well as for patients must be current with the local standard of practice or national standards (in the U.S., OSHA and as published by the Centers for Disease Control, CDC).

02.06.01 Policies and procedures must be written and readily available to all personnel of the medical transport service.

02.06.02. There is an Exposure Control Plan consistent with national standards (in the U.S., OSHA Guidelines).

02.06.03 Additional medical and agency resources pertinent to infection control must be identified and made available in the policy manual to all medical transport personnel, for example, isolation precautions for specific diseases/conditions.

02.06.04 Education programs will include the institution's/service's infection control resources, programs, policies and CDC recommendations. In addition, initial and annual education regarding identification, management and safety related to patients with potentially infectious pathogens is documented.

02.06.05 Infection control policies and procedures will be reviewed on an annual basis.

02.06.06 Education programs and policies regarding latex allergies may include:

1. Patients and employees at risk for latex sensitivities and symptoms manifested by an allergic reaction

2. Maintaining a latex-safe environment

3. Methods to minimize latex exposure to lessen risks of allergic reactions in medical personnel

02.06.07 Preventive measures - Medical transport teams transporting patients must practice preventive measures lessening the likelihood of transmission of pathogens. Policies and procedures address:

1. Personnel health concerns and records of:
 a. Pre-employment and annual physical exams or medical screening to include:
 • History of acute or chronic illnesses
 • Illnesses requiring use of medications that may cause drowsiness, affect judgment or coordination
 • Immunization history appropriate to the scope of practice—transport team members are encouraged to have tetanus and hepatitis B immunization. Measles, mumps, and rubella (MMR) immunizations are encouraged for those born after 1957.
• Weight and lifting/strength/agility testing as appropriate to policies of the service

• Determination of whether individual is fit for duty

b. Provide annual tuberculosis testing (purified protein derivative) and other testing, screenings and vaccinations as consistent with current national (CDC in the U.S.) guidelines. This includes medical personnel, pilots and mechanics.

c. International immunization history of the transport team is documented if appropriate to the scope of care.

2. Management of communicable diseases and infection control in the transport environment is outlined in policies.

a. Use of gloves, eye and mouth protection. Personal protective equipment is readily accessible in the aircraft/ambulance or issued to the medical transport team.

b. Use of safety needles and blunt or other type system to lessen the risk of needlesticks to those who come in contact.

c. Sharps disposal container for contaminated needles and collection container for soiled disposable items on the aircraft/ambulance. Policy will promote proper disposal of sharps as well as tracking and investigation of sharps that are not properly disposed.

d. Cleaning and disinfecting with appropriate disinfectant of the patient cabin/compartment area, equipment, and personnel's soiled uniforms.

e. Mechanism for identifying those at risk for exposure to an infectious disease.

f. A plan for communication between the medical transport service personnel, EMS providers, and hospital when exposure is suspected/confirmed to include what follow-up is necessary.

• Written notification must go out in an expedient manner.

• Follow-up is documented.

g. A policy for special precautions when transporting patients with known infectious diseases.

• There is also a method to verify patient’s immunization history for international transport.

• Blood specimens or other potentially infectious materials must be placed in a leak proof, sealed container during transport.

• Disposal of contaminated materials from the aircraft or ambulance meets federal OSHA Guidelines

h. Proper cleaning or sterilization of all appropriate instruments or equipment

i. Hand washing before and after each invasive patient intervention and after removing gloves
• When hand washing facilities are not available, antiseptic hand cleaners or towelettes must be used.

• If antiseptic hand cleaners or towelettes are used, hands must be washed as soon as feasible with soap and running water.

j. Management maintains documentation related to any potentially infectious pathogens including confidential records of exposure incidents and post-exposure management. All transport team vaccination records are kept appropriately.

k. A policy addresses access to post exposure prophylaxis (PEP) medications for HIV, meningococcal infections, etc. The PEP medications must be available in a timely manner for all team members.

l. Where there is likelihood of occupational exposure, the following are prohibited: eating, drinking, applying cosmetics or handling contact lenses.

m. Food and drink will not be stored where blood or other potentially infectious materials are present. If the service performs transports with long in-flight times, there must be a policy to address the nutritional needs of patients and personnel.

03.00.00 - COMMUNICATIONS

03.01.00 THE FAA PART 135 CERTIFICATE HOLDER
The FAA Part 135 Certificate Holder has the responsibility and authority to make all flight release decisions. (RW/FW)

03.01.01 The certificate holder must have procedures established for locating each flight for which an FAA flight plan is not filed. (See References FAA Part 135.79 – Flight locating requirements) (RW/FW)

03.02.00 COMMUNICATIONS EQUIPMENT

03.02.01 Communications equipment on the aircraft and ambulance - All communications equipment must be maintained in full operating condition and in good repair. Ambulance communications equipment must be capable of transmitting and receiving clear and understandable voice communications to and from the base station at a reasonable distance. Radios on aircraft and ambulances (as range permits) must be capable of transmitting and receiving the following:

1. Medical direction
2. Communications center
3. Air traffic control (aircraft)
4. Emergency Services (EMS, law enforcement agencies, fire, etc.)

03.02.02 Pilot is able to control and override radio transmissions from the cockpit in the event of an emergency situation. (RW/FW)

03.02.03 Medical team must be able to communicate with each other during flight. Helmets with communications capabilities are required on RW.
03.02.04 If cellular phones are part of the on-board communications equipment, they are to be used in accordance with FCC regulations. (See References) (RW/FW)

1. For aircraft, cellular phones must be shut off whenever the aircraft leaves the ground, and the notice according to FCC regulations must be posted in the aircraft. (RW/FW)

2. **A policy prohibits cellular phone or other communications devices without an acceptable integrated hands free system use while the vehicle is in motion or while refueling except for vital communications or as compliant with state or international regulations. Texting is strictly prohibited.**

3. Ground providers whose medical director(s) has established the requirement for transmission of biomedical telemetry may utilize the cellular telephone system for such communications. Cellular phones, in addition to and not in place of the radio equipment, must not be used in the presence of pacemakers or other equipment sensitive to interference. (G)

03.03.00 COMMUNICATIONS SPECIALISTS

A Communication Specialist must be assigned to receive and coordinate all requests for the medical transport service.

03.03.01 Staffing:

1. Scheduling and individual work schedules demonstrate strategies to minimize duty-time, fatigue, length of shift, number of shifts per week and day-to-night rotation.

 a. Call volume and other required duties are considerations in the number of communication specialists on duty at any one time. (Programs must be able to demonstrate how they assign staffing levels, for example, number of Communication Specialists on duty per shift relevant to the number of vehicles and teams in service.)

 b. There are relief personnel with the appropriate training available for periodic breaks.

 c. Personnel must have at least ten hours of rest with no work-related interruptions prior to any scheduled shift of twelve hours or more. The intent is to preclude back-to-back shifts with other employment, commercial or military flying, or significant fatigue-causing activity prior to a shift.

 d. On-site shifts are routinely scheduled for a period not to exceed 18 hours. Twenty-four hour shifts are not acceptable. In addition:

 - Personnel must have the right to call “time out” and be granted a reasonable rest period if a team member determines that he or she is unfit or unsafe to continue duty, no matter what the shift length. There must be no adverse personnel action or undue pressure to continue in this circumstance.

 - Management must monitor flight volumes and personnel’s use of the “time out” policy to ensure that medical personnel utilize the right to call “time-out” appropriately.

2. Communications personnel are provided with an opportunity to join wellness programs offered by the medical transport service.

03.03.02 Training of the designated person must be commensurate with the scope of responsibility of the Communications Center personnel.
1. Initial training, which must include:

 a. Medical terminology and obtaining patient information

 b. Knowledge of EMS—roles and responsibilities of the various levels of training –BLS/ALS, EMT/EMT-Paramedic

 c. State and local regulations regarding EMS

 d. Familiarization with equipment used in the field and inter-facility setting

 e. Knowledge of national aviation regulations and Federal Communications Commission regulations or equivalent as pertinent to medical transport service (RW/FW)

 f. General safety rules and emergency procedures pertinent to medical transportation and flight following procedures

 g. Navigation techniques/terminology, flight following and map skills. This must include an understanding of GPS navigation and approaches. (RW/FW)

 h. Understanding weather interpretation and how to retrieve current and forecasted weather to assist the pilot during a transport if other means are not in place within the organization (RW/FW)

 i. Types of radio frequency bands used in medical and ground EMS

 j. Assistance with the hazardous materials response and recognition procedure using appropriate reference materials

 k. Sleep deprivation, sleep inertia, circadian rhythms and recognizing signs of fatigue

 l. Stress recognition and management to include resources for Critical Incident Stress Debriefing or other type of post critical incident counseling

 m. Customer service/public relations/phone etiquette

 n. Quality management

 o. Crew Resource Management (CRM) pertinent to communications

 p. Computer literacy and software training

 q. Post Accident/Incident Plan (PAIP)

2. There is evidence of recurrent training and of training as policies and equipment changes occur and also includes:

 a. **AMRM or** Crew Resource Management (CRM) pertinent to communications

 b. **Post Accident/Incident Plan (PAIP)**

 c. **Sleep deprivation, sleep inertia, circadian rhythms and recognizing signs of fatigue**
d. Stress recognition and management to include resources for Critical Incident Stress Debriefing or other type of post critical incident counseling

Examples of evidence to meet compliance:
If the FAA Part 135 Certificate Holder is not the employer of communications center staff, there is evidence of interface with training and policies that meet the Certificate Holder’s operational control specifications.

3. Certifications (such as EMT, EMD, NAACS Certified Flight Communications Course or equivalent) are encouraged, and if required by position description, must be current.

03.04.00 COMMUNICATIONS QM PROGRAM
Communications is part of the program’s QM program and communications personnel participate in staff, safety and QM meetings.

03.05.00 SHIFT BRIEFINGS
There are shift briefings conducted at the beginning of each shift to assure continuity between shifts that includes communications personnel.

03.06.00 POST FLIGHT DEBRIEF
A post flight transport debrief is conducted after each flight that includes the communications specialist. (RW/FW)

03.07.00 FORMAL MEETINGS
Formal periodic meetings (separately held or part of the program’s staff meetings) are strongly encouraged for which minutes are kept on file. Minutes will include who is presiding, discussion and who was present. There are defined methods, such as a communications book or electronic mechanisms for disseminating minutes and information between meetings.

03.08.00 COMMUNICATIONS POLICIES must be in writing and include the following:

03.08.01 There is a written policy that at the time of a request, the pilot is not informed of the patient condition or age unless there are operational considerations (for example: weight, extra equipment etc.). (RW)

03.08.02 A readily accessible post accident/incident plan must be part of the flight following protocol so that appropriate search and rescue efforts may be initiated in the event the aircraft or ground ambulance is overdue, radio communications cannot be established nor location verified. There must be a written plan to initiate assistance in the event the ambulance is disabled.

1. Post accident/incident plans are easily identified, readily available, and understood by all program personnel and minimally include:

 a. List of personnel (with current phone numbers) to notify in order of priority (for communication specialist to activate) in the event of a program incident/accident (for air or ground). This list must minimally include sponsoring organization individuals where applicable, risk management attorney, family members of team members, family of patient, referring hospital, receiving hospital, security (as applicable), human resources (as applicable), media relations or pre-identified individual who will be responsible for communicating with the media, state health department and other team members.
b. Notification plans include appropriate family members and support services to family members following a tragic event. There must be timely notification of next of kin. Next of kin is no longer strictly defined at the federal level so the crew member determines this on a data sheet and reviews annually. It is strongly recommended that:

- Family assistance includes coordination of family needs immediately after the event e.g. transportation, lodging, memorial/burial service, condolences, initial grief support services/referrals, (usually through appointment of a family liaison).

- Continuity includes follow through with the family after the event (e.g. submission of crew to national EMS memorial service, the continuation of grief counseling and support referrals, the inclusion of families in decision-making on anniversaries/memorials, and check-ins following release of NTSB reports, or equivalent, etc.)

c. Consecutive guidelines to follow in attempts to:

- Communicate with the aircraft or ambulance

- Initiate search and rescue or ground support

- Have a back-up plan for transporting the ground ambulance patient in the event of an incident or accident and/or the ambulance is inoperable

- Have an aviation individual identified from the program as the scene coordinator to coordinate activities at the crash site. (RW/FW)

d. Preplanned time frame to activate the post accident/incident for overdue aircraft or ambulance

e. A method to insure accurate information dissemination

f. Coordination of transport of injured team members to higher level of care if needed and/or back to local area

g. Procedure to document all notifications, calls, communications and to secure all documents and tape recordings related to the particular incident/accident

h. Procedure to deal with releasing information to the press

i. Resources available for CISD or other counseling alternatives

j. Process to determine whether the program and/or component of the program (RW/FW/G) will remain in service. If it is determined that the program or a component of the program will go out of service, other regional transport services, primary customers, EMS, public service groups and other applicable groups are advised.

2. A drill is conducted semi-annually (one in daytime and one at night) to exercise the post incident/accident plan. This drill must include pilots, medical personnel, communications personnel, mechanics and administrative personnel. Written debriefing and critique of PAIP drills must be shared with all staff members.
a. A full drill must test each of the modes of transport (if the program has RW, FW and G or combination thereof) within a three year time frame.

b. An actual incident may be used as appropriate if documented and documentation includes loop closure. A table top drill – defined as a drill where there are position challenges between the pilot and the communications specialist only and not covering all the components and disciplines listed in the PIAP is not considered a full drill.

03.08.03 A general test of all emergency procedures to include fire drill, intruder on premises, catastrophic failure of the communications center, helipad mishaps, forces of nature etc. will also be conducted on an annual basis.

03.08.04 A disaster preparedness drill must be part of the general test of all emergency procedures or conducted separately as an annual drill.

Examples of evidence to meet compliance:
The PIAP plan and drills to test the plan include all modes of transport performed by the program. Results of the drill are disseminated to the entire staff. A drill to test other emergency procedures as they apply to the facility is planned and documented.

03.09.00 FLIGHT FOLLOWING

03.09.01 Satellite tracking systems are strongly recommended for all aircraft and required for aircraft that do not have a 406 MHz ELT. Initial coordination must be documented and continuous flight following (or initiating and following ground transport) must be monitored and documented and must consist of the following: (RW/FW)

03.09.02 Public Safety Answering Points (PSAP), dispatch centers such as 911 centers or any other agency, hospital or service, must contact the program’s communications center directly to request a transport. A specific base must not be contacted directly for a patient/victim response.

03.09.03 Initial coordination to include communication and documentation of:

1. Time of call (Time request/inquiry received)
2. Name and phone number of requesting agency
3. Age, diagnosis or mechanism of injury
4. Referring and receiving physician and facilities (for interfacility requests) as per policy of the medical transport service
5. Verification of acceptance of patient and verification of bed availability by referring physician and facility
6. Destination airport, refueling stops (if necessary), location of transportation exchange and hours of operation
7. For those flights meeting the definition of “long range”, flight planning must include the need for APU, GPU, catering, oxygen servicing, etc. if any technical stops are required/anticipated including contingency planning for alternative stops.
8. Weather checks prior to departure and during mission as needed
9. Previous turn-downs of the mission (i.e. helicopter shopping)
10. Ground transportation coordination at sending and receiving areas

11. Time of Dispatch (Time medical personnel notified flight is a go, post pilot’s OK of flight)

12. Time Depart Base (Time of lift-off from base or other site)

13. Number and names of persons on board

14. Amount of fuel on board (RW)

15. Estimated time of arrival (ETA)

16. Pertinent LZ information (RW)

17. Time Arrive Location (Time aircraft/ambulance arrives at landing zone, helipad, airport or referring area)

18. Time Depart Location (Time aircraft/ambulance lifts off from landing zone, helipad, or airport or leaves referring area)

19. Time Arrive Destination (Time patient transferred to receiving clinical team; in unusual circumstances, this may not be at a healthcare facility)

20. Time Depart Destination (Time left patient destination. This will be recorded for transports not ending at base)

21. Time Arrive Base (Time arrive base after call completed)

22. Time Aborted (Time authorized transport is aborted/canceled after dispatch)

03.09.04 Concluding documentation for all modes of transport may include calculation of:

1. Call Received (by Communications Center)

2. Dispatch (time interval between call received and confirmed to depart)

3. Enroute (time interval between confirmation to depart and actual departure)

4. At referring (time interval between departure and arriving at scene or referring facility)

5. At patient (time interval between arriving at scene or referring facility and initial patient contact)

6. Bedside time (time interval between initial patient contact and completing packaging ready to move with the patient to the ambulance or aircraft)

7. Leave referring (time interval between departing scene or hospital bedside with the patient and driving or lifting off)

8. At receiving (time between driving or lifting off from scene or referring facility to arriving at receiving facility)

9. Transfer of care (time between arriving at receiving facility and completing turnover of care)
10. Available (time between turnover of care and return to aircraft or ambulance and back in service)

03.09.05 Additional criteria for fixed wing: operations must be conducted using VFR flight plans minimally and IFR flight plans whenever feasible.

1. Procedures ensure that pilots use Air Traffic Control (ATC) radar and/or communications services whenever operating under VFR and within the service area of an ATC facility or a communications service.

2. In addition to IFR flight plans, there are procedures to notify the communications center of the specific aircraft departure time, estimated time of arrival and arrival at the scheduled destination.

3. For a fixed wing service that flies only pre-scheduled flights, an answering service may serve as the receiving point for requests for service.
 a. Answering service personnel must be trained to obtain specific information when receiving a request to schedule fixed wing patient transportation.
 b. The items must include but not be limited to:
 - Name and telephone number of caller
 - Patient type/condition
 - Date and time call received
 - Anticipated or scheduled date/time of departure
 - Location of patient and destination
 c. Specific methods must be used by the answering service for contacting the medical service coordinator (or designee) to relay request information, i.e., pager numbers, telephone and/or cellular numbers.
 d. Guidelines of timely notification (less than thirty minutes) must be established. Alternate procedures for notification must be in place in case the coordinator is not available to receive the request/information
 e. An on-call roster of the medical team must be provided to the answering service. The roster includes a priority phone list of personnel to notify in the event of an emergency.

03.10.00 FLIGHT FOLLOWING AND COMMUNICATIONS DURING A TRANSPORT

03.10.01 The medical transport service must provide direct communication capabilities for parties involved in the transport, i.e., medical personnel, ground ambulance providers, to ensure rapid dissemination of information, coordination of efforts and problem solving. In each case, direct contact between the parties must be established whenever possible as follows: (This also applies to Ground)

1. Direct or relayed communications to communications center (while in motion) specifying locations and ETA’s, and deviations, if necessary.
a. A sterile cockpit is maintained below predetermined altitudes so that the pilot is able to transmit and receive vital information and to minimize distractions during any critical phase of flight. No external communications are permitted by the medical team and no patient information is transmitted at this time unless radios for medical report are isolated. (RW/FW)

b. There is a policy/procedure for diversions from original destinations (airports, hospital landing sites, alternative scene LZ’s). (RW/FW)

2. There is a written policy that addresses direct or relayed communications to the communications center to specify all takeoff and arrival times.

3. For long range transports there are policies that outline plans for communications between crew members who may be separated while transporting the patient by ground or by hotel stays.

4. Time between each communication.
 a. Time between each communication must not exceed 15 minutes while in flight unless a system of continuous automatic position tracking is utilized. (RW)
 b. There is a policy to address continuous automatic position tracking, if utilized, to ensure there are also verbal communications at predetermined times. (RW/FW)
 c. If an IFR or VFR flight plan has not been filed, time between communications must not exceed 15 minutes if a means to communicate, directly or indirectly, is available. (RW/FW)
 d. Time between communications must not exceed 45 minutes while on the ground (RW/G).
 e. Alternate agencies are used to relay communications when direct contact is not possible.

5. There is a written policy that while the aircraft is on a mission, a dedicated communicator assigned to flight follow will be present in the communications center at all times. (RW)

03.11.00 THE COMMUNICATIONS CENTER

03.11.01 Equipment and capabilities

1. At least one dedicated phone line for the medical transport service.

2. A system for recording all incoming and outgoing telephone and radio transmissions with time recording and immediate playback capabilities. Recordings must be kept for a minimum of 90 days.

3. Capability to immediately notify the medical transport team and on-line medical direction (through radio, pager, telephone, etc.)

4. A status display with information about pre-scheduled flights/patient transports, the medical transport team on duty, weather and maintenance status.

5. Current local aircraft service area maps and navigation charts must be readily available for aviation operations. Mapping software could supplement current charts. Road maps must be available for ground transports services.

6. Seating and workstations that are ergonomically appropriate for each communications specialist on duty.
03.11.02 Policies and plans

1. Communications policy and procedures manual.

2. A method to keep noise and other distractions (traffic) from the communications area while the communications specialist is involved with a medical transport mission.

3. An evacuation plan that provides for continuous communications with transport personnel in the event there is a need to evacuate the communications center.

04.00.00 - SAFETY AND ENVIRONMENT

04.01.00 GENERAL SECTION

04.01.01 There is evidence that safety issues are addressed that are specific to the operational environment (i.e., weather, terrain, aircraft performance).

Examples of evidence to meet compliance:
Helicopters operating at density altitudes of 5000 feet and above must have higher lift capabilities than those operating at lower density altitudes.

04.01.02 The physical base or operations demonstrates an appropriate and safe work environment for all personnel with adequate lighting, ventilation, and equipment storage for patient care and care of the transport ambulance.

1. Oxygen storage must be 10 feet from any open flame and 20 feet from combustibles in a well-ventilated area with no smoking signs posted or in accordance with national regulations. (See FDA Section 211.42 guidelines in References).

2. Hangar or building facility under authority of the program complies with OSHA, government or international standard (see specifics in references).

04.01.03 Aircraft/ambulance and personnel security

1. A policy addresses the security of the aircraft and/or ambulance and physical environment (i.e. hangar, fuel farm).
 a. Security of the aircraft or ambulance if left unattended on a helipad, hospital ramp or unsecured airport or parking lot.
 b. Training for pilots, drivers and medical personnel to recognize signs of aircraft/ambulance tampering.
 c. Plan to address aircraft or ambulance tampering.

Examples of evidence to meet compliance:
Pilots, drivers and medical personnel are able to identify signs of aircraft /ambulance tampering as outlined in an education program.

2. Personnel security - Medical team is required to carry photo IDs (driver’s license is acceptable) with first and last name while on duty.
Examples of evidence to meet compliance:
Policy requires wearing or carrying ID’s while on duty

3. Patient security
 a. Family members or other passengers who accompany patients must be properly identified and listed by name (in compliance with HIPAA regulations) in the communications center by the transport coordinator.

04.02.00 SAFETY EDUCATION

04.02.01 Education Specific to the In-Flight and Ground Transport Environment

1. Completion of all the following educational components must be documented for each of the flight medical personnel. These components must be included in initial education as well as reviewed on an annual basis with all regularly scheduled, part-time or temporarily scheduled medical personnel and specialty care providers as appropriate for the mission statement and scope of care of the medical service.

 a. Medical patient transport considerations (assessment/treatment/preparation handling/equipment)
 b. Day-and night-flying protocols
 c. EMS communications (radios) and familiarization with EMS system
 d. Extrication devices and rescue operations (ranging from familiarity to explicit training depending on the service’s mission statement) (RW)
 e. General aircraft safety. (It is strongly recommended to have the aircraft physically present when providing this training.) This training addresses: (RW/FW)
 • Aircraft evacuation procedures (exits and emergency release mechanisms) to include emergency shutdown- engines, radios, fuel switches, electrical and oxygen shutdown
 • Aviation terminology and communication procedures to include knowledge of emergency communications knowledge of emergency communications frequency
 • In-flight and ground fire suppression procedures (use of fire extinguishers)
 • In-flight emergency and emergency landing procedures (i.e., position, oxygen, securing equipment)
 • Safety in and around the aircraft, including national aviation rules and regulations pertinent to for medical team members, patient(s), and lay individuals
 • Specific capabilities, limitations and safety measures for each aircraft used, which includes specific training for backup or occasionally used aircraft
 • Use of emergency locator transmitter (ELT)
 • Minimal safety requirements on ground support ambulances used away from base for
fixed wing operations, for example, adequate number and functioning seat belts for all team members, no loose equipment

f. Ground operations (RW)

- Landing sites
 - On-scene requirements
 - Hospital landing site changes or special needs review
- Patient loading and unloading – policy for rapid loading/unloading procedures
- Refueling policy for normal and emergency situations

g. Hazardous materials recognition and response. (Even if not part of the service’s mission statement, personnel must be able to recognize a hazardous materials situation if encountered.)

h. Highway scene safety management (See References)

i. Survival training/techniques/equipment that is pertinent to the environment/geographic coverage area of the medical service. (Includes water egress survival training if enroute travels are routinely over large bodies of water such as rivers, lakes, bay areas based on the program risk assessment)

- Smoke in the cockpit/cabin, firefighting in the cockpit/cabin
- Emergency evacuation of crew(s) and patient(s)

Examples of evidence to meet compliance:

Water egress survival training should include: hazards to aircraft and personnel during overwater operations; pre-ditching, considerations and procedures; emergency ditching and evacuation procedures; upright emergency evacuation; emergency evacuation; surface water survival and rescue water skills. Fixed wing services that are required by FARs to carry emergency equipment, such as inflatable rafts, should provide this training.

Examples of evidence to exceed compliance:

For underwater escape training, use full immersion/inversion dunker capable of inducing disorientation and accurately replicating the aircraft interior if traversing rivers or larger bodies of water on a regular basis. Rescue/recovery training – helicopter at sea simulation should be provided if traversing rivers or larger bodies of water on a regular basis.

2. Completion of all the following educational components must be documented for each of the ground transport personnel. These components must be included in initial education as well as reviewed on an annual basis with all regularly scheduled, part-time or temporarily scheduled personnel or specialty care providers as appropriate for the mission statement and scope of care of the ground interfacility service. (G)

a. EMS communications (radios) and familiarization with EMS system

b. Extrication devices and rescue operations (ranging from familiarity to explicit training, depending on the service’s mission statement)

c. General safety. (It is strongly recommended to have the ambulance physically present when providing this training.) This training addresses:
• Ambulance evacuation procedures (exits and emergency release mechanisms)
• Fire suppression procedures (location and use of fire extinguishers)
• Patient loading and unloading procedures
• Refueling procedure with patient(s) on board
• Use of road hazard equipment
• Specific capabilities, limitations and safety measures for each ambulance used, which includes specific training for backup or occasionally used ambulances

d. Hazardous materials recognition and response

e. Survival training/techniques/equipment that is pertinent to the environment/geographic coverage area of the medical transport service but must include at a minimum:

04.02.02 Community Outreach Safety Program

1. The medical service must facilitate integration of all emergency services and transport modalities by supporting joint continuing education programs and operational procedures to include but not be limited to:

 a. Hazardous materials recognition and response

 b. Disaster response/triage

 • The medical transport service must be integrated with and communicate with other public safety agencies, including ground emergency service providers. This may include participation in regional quality improvement reviews, regional disaster planning and mass casualty incident drills that include an integrated response to terrorist events.

 • There is a response plan to all types of disaster, including weapons of mass destruction, terrorist events and natural disasters.

 • There is a policy that prohibits “freelance responses” (responding without being specifically requested) to disasters.

 • All personnel are familiar with the plan to respond to disasters.

 • FEMA or other Emergency Management classes for scene and disaster response

2. Interface of the medical team with other regional resources

 a. For services that respond to incident scenes and support disaster response, staff has completed the Federal Emergency Management Agency Independent Study Courses on Incident Command. (See References)
b. For services that are involved in national disaster response, management staff must also have completed IS-800b. – National Response Framework, An Introduction.

3. A planned and structured safety program must be provided to public safety/law enforcement agencies and hospital personnel who interface with the medical service that includes: (RW)
 a. Identifying, designating and preparing an appropriate landing zone (LZ)
 b. Personal safety in and around the helicopter for all ground personnel
 c. Procedures for day/night operations, conducted by the medical team, specific to the aircraft:
 • High and low reconnaissance
 • Two-way communications between helicopter and ground personnel to identify approach and departure obstacles and wind direction
 • Approach and departure path selection
 • Procedures for the pilot to ensure safety during ground operations in a LZ with or without engines running

4. Crash recovery procedures specific to the aircraft make and model must minimally include: (RW)
 a. Location of fuel tanks
 b. Oxygen shut-offs in cockpit and cabin
 c. Emergency egress procedures
 d. Aircraft battery – stay away from it
 e. Emergency shut-down procedures

5. Education regarding “weather shopping” must be included. (RW) (See References)

6. Records are kept of initial and recurrent safety training of pre-hospital, referring and receiving ground support personnel. (RW)

04.03.00 EQUIPMENT AND OPERATIONS AROUND THE AIRCRAFT/AMBULANCE
(For medical configuration see Section 02.05.00)

04.03.01 The aircraft/ambulance configuration and patient placement allows for safe medical personnel egress.

1. Doors must be fully operable from the interior.

2. Doors must be capable of being opened fully and held by a mechanical device.

04.03.02 Aircraft/ambulance operational controls and communications equipment are physically protected from any intended or accidental interference by the patient, medical transport personnel, or equipment and supplies.
04.03.03 Lighting, electric power sources and communications equipment

1. In an aircraft, a means to protect the pilot’s night adaptation vision must be provided for night operations, either through the medical configuration or by a dividing curtain. (RW/FW)

2. In an ambulance, the interior lighting includes an overhead or dome light that is configured so as not to cause reflection and impair the driver’s vision while driving. (G)

3. Electric power outlet and/or invertors required for specialized medical equipment must not compromise the operation of any electrical aircraft/ambulance equipment.

4. Medical or communications equipment will be functional without interfering with the avionics and the avionics must not interfere with function of medical equipment on the aircraft. Medical or communications equipment will be functional on the ambulance without interfering with the mechanical components of the ambulance or vice-versa.

04.03.04 Head-strike envelope:

1. The interior modification of the aircraft is clear of objects/projections OR the interior of the aircraft is padded to protect the head-strike envelope of the medical personnel and patients as appropriate to the aircraft. (FW)

2. The head-strike envelope in the ambulance must be clear of hard objects that could cause injury in the event of poor road conditions or sudden stops. (G)

3. Helmets are required for rotorwing operations. Helmets for crewmembers must be appropriately fitted and maintained according to the program’s manufacturer’s criteria or program’s policy. (RW)

04.03.05 Securing equipment and supplies - All aircraft equipment (including specialized equipment) and supplies must be secured according to national aviation regulations. (Use of bungee cords is not considered appropriate when securing equipment and supplies). Ambulance equipment must be secured by an appropriate clamp, strap, or other mechanism to the vehicle or stretcher/isolette to prevent movement during a crash or abrupt stop.

1. If an engineered mount is provided for specific equipment, that equipment must be secured in the mount at all times during the transport.

2. Softpacs and equipment bags are not to be stored with belts that loop through the handles (as these handles can easily tear and dislodge)

04.03.06 For long range transports, there are diversion and contingency plans that include:

1. Diversion & Contingency Plans
 a. If patient’s condition deteriorates
 b. For mechanical issues
 c. An International Checklist is available that includes information about specific locations, use of medical assistance companies, networking and, local handlers,
 d. Insurance, ICAO regulations and specific medical malpractice policies are also included.
e. DEA Issues – International law states it is illegal to bring controlled substances onto foreign soil— they cannot be removed from the airplane.

- There must be a policy that details how controlled substances are secured when the medical crews depart the aircraft.

2. Crew Safety - Policies address crew safety that includes:

a. Cultural intelligence

- Checking with medical assist companies and State Departments regarding high risk countries

Examples of evidence to exceed compliance: Crews should never eat the same food; Never leave the hotel alone – have a buddy system; Have a specific time to be back at the hotel; Behave and dress so as to blend in with locals; and No high risk activities, for example, bungee jumping.

04.03.07 Aircraft/ambulance equipment

1. Night vision goggles are strongly encouraged for programs conducting rotorwing night operations. If night vision goggles (NVG’s) are used by the service, a policy addresses use of night vision goggles by personnel on board, and training is documented for personnel involved. (RW)

 a. The certificate holder must have Operations Specifications approved by national aviation regulations indicating authorization for operations utilizing night vision devices.

 b. The training program must be approved by national aviation regulations and will specify initial qualifications and currency requirements.

 c. If NVG’s are used to the ground, the pilot must be trained and authorized to use the NVGs. In addition, it is strongly encouraged that one team member be trained and authorized to use the NVG’s.

 d. If NVG’s are used only by medical personnel, crew coordination must be outlined by policy, and appropriate training must be documented.

2. The helicopter must be equipped with a 180 degree controllable searchlight capable of at least 400,000 candle power. (RW)

3. The aircraft must either have a 406 MHz emergency locator transmitter (ELT) OR must be monitored at 3 minute intervals or less by a satellite tracking system. (RW)

 a. If using the satellite tracking system and the aircraft has not been upgraded to a 406 MHz ELT, a 121.5 MHz ELT must not be disarmed because it may be monitored by other aircraft.

4. The aircraft must be equipped with a functioning radar altimeter. (RW)

 a. If the radar altimeter is inoperative, the Certificate Holder has policies and procedure that address operations with an inoperative radar altimeter.

5. **Vehicle conspicuity (reflectivity/chevrons, etc.)** (G)
a. The ambulance is clearly identifiable during the night with reflective striping on all side of the vehicle. Adherence to the National Fire Protection 1901 Guidelines for Reflective Striping of Emergency Vehicles is encouraged but as a minimum must include:

- **Sides of the vehicle:**

 - A retroreflective stripe(s) shall be affixed to at least 50 percent of the cab and body length on each side. (ref: NFPA 1901: 15.9.3.1)

 - The stripe or combination of stripes shall be a minimum of 4 inches (100mm) in total width. (ref: NFPA 1901: 15.9.3.1.1)

 - The 4 inch (100mm) wide stripe or combination of stripes shall be permitted to be interrupted by objects (i.e., receptacles, door handles) provided the full stripe is seen as conspicuous when approaching the ambulance (ref: NFPA 1901: 15.9.3.1.2)

 - A graphic design shall be permitted to replace all or part of the required striping materials if the design or combination thereof covers at least the same perimeter length required by 07.01.xx.07c

- **Back of the vehicle:**

 - If the NFPA 1901 Guidelines for Reflective Striping of Emergency Vehicles are not followed for the reflective striping of the rear of the ambulance, then at a minimum, the reflective striping must follow the same standards as for the vehicle sides.

- **Doors:**

 - Any door of the ambulance designed to allow persons to enter or exit the ambulance shall have at least 96 square inches (62,000 square millimeters) of retroreflective materials affixed to the inside of the door.

5. It is strongly encouraged to install the following on helicopters (reference NTSB recommendations): (RW)

 a. HTAWS

 b. Flight data recording devices

 c. Flight control stabilization system for single pilots operations

6. It is strongly encouraged that ambulances be equipped with safety technology such as real-time feedback mechanisms, event-recording cameras, speed governors and/or weather alert systems. (G)

Examples of evidence to exceed compliance:

All in service helicopters are equipped with NVG’s, TAWS, flight data recorders and autopilots. (If collecting FOQA, Flight Operations Quality Assurance, data is reported to the air medical program.) All in service ambulances are equipped with real-time feedback mechanisms or video recorders.
7. The aircraft/ambulance must be equipped with survival gear appropriate to the coverage area and the number of occupants.
 a. Survival gear will be maintained appropriately per written policy and must be available to personnel on board.
 b. A written policy must be in place regarding checking survival kit contents and expiration dates on timed supplies.

8. A fire extinguisher must be accessible to medical transport personnel and pilot/driver while in motion.

9. "No smoking" signs are prominently displayed inside the cabin or ambulance.

04.03.08 There is a policy and an operations risk profile that addresses back-up aircraft to include: (RW/FW)

1. Checklists for medical configuration pertinent to the program’s scope of care and patient population
2. Which personnel are responsible for checking and ensuring the aircraft is ready for patient transports before the aircraft is put into service
3. Realistic time frame to perform a maintenance check before the aircraft is put into service

04.03.09 Use of occupant restraint devices:

1. Air medical personnel must be in seat belts (and shoulder harnesses if installed) that are properly worn and secured for all takeoffs and landings according to national aviation regulations. A policy defines when seat belts/muster harnesses can be unfastened. (RW/FW)

2. Ambulance personnel must be seat belted when the ambulance is in motion unless emergent patient condition precludes it. (G)
 a. Front seat occupants must always be belted.
 b. Overhead grab rails must be present in the patient care area.
 c. It is strongly encouraged to have forward and aft facing individual seats. Side facing bench seats are not recommended. If the ambulance has side facing bench seats, seat belt mountings must be situated at the pelvic level in order to restrain personnel/passengers. Shoulder harnesses must not be used on side facing bench seats (See References).

04.03.10 A written policy describing patient loading and unloading procedures for medical transports as follows: (RW/FW)

1. Specific policies concerning circumstances for rapid patient loading or unloading if practiced
2. An established policy to ensure that the pilot is notified of any add-on equipment for weight and balance considerations

04.03.11 Refueling policies for normal and emergency situations (for fuel systems see 05.10.00 and 06.10.00):

1. For aircraft/ambulance, refueling with the engine running (prohibited for ambulances), rotors turning, and/or passengers on-board is not recommended. However, emergency situations of this type can arise. Specific and
rigid procedures must be developed by the certificate holder to handle these occurrences. Such "rapid refueling" procedures will be covered by the certificate holder's training program. Refueling policies must address:

a. Refueling with engine(s) running or shut down

b. Refueling with medical transport personnel or patient(s) on board, which includes a requirement that at least one medical transport person remain with the patient at all times during refueling or stopover

c. It is strongly encouraged to allow rapid refueling only if the location of the refueling port does not block patient and crew egress in the event of a fire or other emergency while refueling.

d. Fire hazard policies pertinent to refueling procedures are addressed in the certificate holder's Operation Specifications Manual.

3. The pilot must test, verify or validate fuel quality before refueling and stay with the aircraft at all times while refueling.

04.03.12 The Program/Certificate Holder has policies that govern operational limitations with specific equipment inoperative, for example, if the searchlight is not functioning. If Night Vision Goggles are used, the policy must be appropriate to that specific mode of operation. (RW)

04.03.13 Specific policy to address the combative patient

1. Additional physical and/or chemical restraints must be available and used for combative patients who potentially endanger themselves, the personnel or the aircraft/ambulance.

2. A policy must address refusal to transport patients, family members or others who may be considered a threat to the safety of the transport and/or medical transport personnel.

04.03.14 Written policy to address response to hazardous materials requests or unanticipated contact with hazardous materials

1. There is an outlined plan of action according to pre-established policies with appropriate training of the medical transport team.

2. A plan for patient decontamination procedures prior to transport, including removal of patient clothing and other decontamination procedures for saturation of gasoline or other hazardous chemicals.

3. The medical transport team must be fully informed about the nature of the hazardous materials.

4. A list of contaminated materials, which could pose a threat to the medical transport team or render transport inappropriate, must be readily available.

5. The LZ or aircraft operational area must be a safe distance to avoid any downwind danger when approaching or departing. (RW)

6. A policy addressing carry-on baggage of patient or passenger that must be physically inspected for hazardous materials that could endanger the medical transport team or compromise safety (such as weapons, sharp objects, chemicals, and obvious contaminated materials) before loading on the transport aircraft/ambulance.

7. A policy addresses the presence of firearms on the transport vehicle.
04.04.00 SAFETY MANAGEMENT SYSTEM
Management is responsible for a Safety Management System, (see References) but management and staff are responsible for making operations safer.

04.04.01 The Safety Management System is proactive in identifying risks and eliminating injuries to personnel and patients and damage to equipment.

04.04.02 A Safety Management System includes:

1. A statement of policy commitment from the accountable executive
2. A non-punitive system for employees to report hazards and safety concerns
3. A system to track, trend and mitigate errors or hazards
4. A system to track and document incident root cause analysis
5. A Safety Manual
6. A system to audit and review organizational policy and procedures, ongoing safety training for all personnel (including managers), a system of pro-active and reactive procedures to insure compliance, etc.

04.04.03 There is evidence of management’s decisive response to non-compliance in adverse safety or risk situations.

1. Senior management must establish a process to identify risk escalation to ensure that safety and risk issues are addressed by the appropriate level of management up to and including the senior level.

2. Operational Risk Assessment tools must include but not be limited to issues such as: transport acceptance that includes tools for assessing pilot/driver and crew alertness and fatigue, aviation decision making, mission acceptance – medical decision making, search and rescue, public relations, training, maintenance and repositioning events.

04.04.04 The program has a process to measure their safety culture by addressing:

1. Accountability – employees are held accountable for their actions.

2. Authority – those who are responsible have the authority to assess and make changes and adjustments as necessary.
 a. Standards, policies and administrative control are evident.
 b. Written procedures are clear and followed by all.
 c. Training is organized, thorough and consistent according to written guidelines.
 d. Managers represent a positive role model promoting an atmosphere of trust and respect.

3. Professionalism – as evidenced by personal pride and contributions to the program’s positive safety culture

4. Organizational Dynamics
a. Teamwork is evident between management and staff and among the different disciplines regardless of employer status as evidenced by open bi-directional and inter-disciplinary communications that are not representative of a “silo” mentality.

b. Organization represents a practice of encouraging criticism and safety observations, and there is evidence of acting upon identified issues in a positive way.

c. Organization values are clear to all employees and embedded in everyday practice.

Examples of evidence to meet compliance:

The Safety Management System includes the criteria defined in the International Helicopter Safety Team (IHST) tool kit or equivalent. (RW/FW)

5. A Safety Management System includes all disciplines and processes of the organization. A Safety Committee is organized to solicit input from each discipline and must meet at least quarterly with written reports sent to management and kept on file as dictated by policy.

a. Written variances relating to safety issues will be addressed in Safety Committee meetings.

b. The committee will promote interaction between medical transport personnel, communications personnel, pilots, mechanics and drivers addressing safety practice, concerns, issues and questions.

c. There is evidence of action plans, evaluation and loop closure.

6. There must be a designated safety person for an air transport service. Ground transport services that are not affiliated with an air transport service must also have a designated safety person.

7. The Safety Committee is linked to CQI and risk management.

8. Aviation and ambulance related events are identified and tracked to minimize risks. (See Glossary for definition of event.)

a. Medical transport services are required to report aviation and ground ambulance accidents to CAMTS and strongly encouraged to report incidents to the CONCERN network and must report to the appropriate government agencies. There is a written policy that addresses reporting incidents or accidents and assigns certain individual(s) with the responsibility to report. (See Glossary for definitions of accident and incident.)

04.04.05 Flight Data Monitoring Program – A flight data monitoring program is required if a flight data recorder is on the aircraft. The flight data monitoring program is a systematic method of assessing, analyzing and acting upon information obtained from flight data to identify and address operational risks before they lead to incidents or accidents. (RW/FW)

Examples of evidence to meet compliance:

The IHST tool kit or similar criteria provides guidance for a flight data monitoring program for both rotorwing and fixed wing. (RW/FW)
05.00.00 - ROTORWING STANDARDS

05.01.00 CERTIFICATE OF THE AIRCRAFT
Certificate holder must meet all Federal Aviation Regulations (FAR’s) or national/international regulations specific to the operations of the medical service in the country of residence, as applicable. This includes a FAR Part 135 Certificate (public service medical transport agencies are included in this requirement) or pertinent operating certificate if outside of the U.S., and Ambulance Operations Specifications specific to EMS operations. The transport service demonstrates compliance with the legal requirements and regulations of all local, state and federal agencies under whose authority it operates.

05.02.00 ALL “PATIENT TRANSPORT FLIGHTS”* must be conducted under FAA Part 135 regulations for weather minimums and flight crew duty time limitations.

*Patient transport flight is defined as any flight segment conducted by rotor or fixed wing equipment that is necessary for transporting patients and the medical teams required to care for such patients. Flight segments included in this definition are: flights for refueling and repositioning for a specific patient transport (including organ donor transports); picking up and returning medical teams to an assigned base; the actual flight segment involving patient movement; and any time medical teams are on board.

05.03.00 VFR WEATHER MINIMUMS must be specified for day and night local, and day and night cross country.

05.03.01 The “local flying area” must be well defined by geographic or manmade features and limited to those areas as defined by the certificate holder and as consistent with FAA Operations Specifications or other national authority.

05.03.02 Cross country flights are those outside of the local flying area.

05.03.03 There is a system for obtaining pertinent weather information. The pilot in command (PIC) is responsible for obtaining weather information according to policy that must address at a minimum:

1. Routine weather checks
2. Weather checks during marginal conditions
3. Weather trending

05.03.04 Communication between pilots, medical personnel, and communication specialists at shift change regarding the most current and forecasted weather is part of a formal briefing.

05.03.05 VFR "response" weather minimums must meet or exceed as outlined in FAA A021 (table follows).
<table>
<thead>
<tr>
<th>CONDITION</th>
<th>Non Mountainous</th>
<th>Mountainous</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Local</td>
<td>Cross Country</td>
</tr>
<tr>
<td>Day</td>
<td>800’ – 2 mile</td>
<td>800’ -3 miles</td>
</tr>
<tr>
<td></td>
<td>Or 244 meters – 3.2 kilometers</td>
<td>Or 244 meters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.8 kilometers</td>
</tr>
<tr>
<td>Night</td>
<td>800’ – 3 miles</td>
<td>1000’ – 3 miles</td>
</tr>
<tr>
<td>With NVG’s or TAWS</td>
<td>Or 244 meters 4.8 kilometers</td>
<td>Or 305 meters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.8 kilometers</td>
</tr>
<tr>
<td>Night</td>
<td>1000’ – 3 miles</td>
<td>1000’- 5 miles</td>
</tr>
<tr>
<td>Without NVG’s or TAWS</td>
<td>Or 305 meters 4.8 kilometers</td>
<td>Or 305 meters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.8 kilometers</td>
</tr>
</tbody>
</table>

1. Minimums are never to be considered as mandatory launch criteria. All factors are to be considered by the pilot who has final authority over a “go-no go” decision. However, any team member who is uncomfortable with launching on or continuing flight into conditions perceived as hazardous has the absolute right to request the pilot return to safer conditions immediately or as soon as possible under IMC conditions.

2. Policies include provisions for patient care and transport alternatives in the event that the aircraft must use alternate landing facilities due to deteriorating weather.

05.03.06 There is a policy designed to discourage ‘shopping’ by first responders and other requesting agents that specifically addresses how the program interfaces with other air medical services in the same coverage area to alert them of a weather turn-down. It is recognized that programs in a common geographic area may experience differing weather conditions and that programs may have differing capabilities. However, programs that turn down a request due to weather should:

1. Ask the requesting agent if another flight program had turned down the request.

2. Notify the requesting agent that the programs in their coverage area share weather information and turn-downs for safety reasons.

3. Notify other programs within their coverage area of the turn-down as soon as possible.

4. Provide the on duty pilot with contact information from other programs for questions about the weather concerns and details (fog, precipitation, wind, etc.).

5. Inform the on-duty pilot immediately if notified of a weather turn-down by another program.

6. Have written evidence of tracking the requests turned down for weather and of participation in regional notification systems as described in 1 through 5 above.

05.03.07 A policy of the certificate holder specifies an appropriate training program for new pilots based on the pilot's experience, flight time, local environment and personal adaptation. An evaluation tool applied individually to each new
Pilot must define the time frame. Strong consideration must be given to higher weather minimums for new and relief pilots.

05.04.00 IFR WEATHER ISSUES

When transitioning to an off-airport site after an instrument approach, the following must apply:

- Local VFR weather minimums must be followed if within a defined local area and if the route and off-airport site are familiar.
- Cross country VFR weather minimums must be followed if not in defined local area or if the pilot is not familiar with route and off-airport site.

05.05.00 PILOT STAFFING

There must be a minimum of four flight-ready pilots permanently assigned per single-pilot aircraft that is available 24 hours a day. Temporary staffing by fewer pilots is permitted for no more than 6 months while finding and training a replacement pilot provided such staffing assures FAA crew rest requirements or international standard. No fewer than six permanently assigned pilots are required for two-pilot operations at a service that is available 24 hours a day. It is encouraged to have eight pilots or four two-pilot crews for two-pilot operations at a service that is available twenty-four hours a day. This will be pro-rated for services that fly less than 24 hours per day.

- Scheduling practices reflect consideration for minimizing duty-time fatigue, length of shift, number of shifts per week, and day-to-night rotation.
- Physical well-being is promoted by the employer wellness programs to include but not be limited to balanced diet, weight control, no smoking.
- Operations facilities must include a quiet area for flight planning, training, and record-keeping.

Examples of Evidence to Exceed Compliance:

Two-pilot crews at night or on 24 hours

05.06.00 PILOT DETERMINES THAT THE AIRCRAFT IS IN AIRWORTHY CONDITION

(and that appropriate pre-flight, takeoff and landing procedures are followed.)

- Prior to the first flight or shift of duty, the pilot:
 1. Verifies that maintenance is not due on the aircraft
 2. Performs a pre-flight inspection according to the manufacturer’s checklist

- Operational practices also include:
 1. A walk-around inspection of the aircraft prior to each takeoff
 2. Establishing contact (when possible) between the pilot and ground units securing an unprepared landing site before the landing occurs
 3. Coordinating arrangements for the pickup or delivery of a patient at private or hospital helipads at least 15 minutes prior to landing
05.07.00 PILOT IN COMMAND QUALIFICATIONS

05.07.01 The pilot must possess at least a commercial rotorcraft-helicopter and instrument helicopter rating.

05.07.02 The pilot in command must possess 2000 total flight hours (or total flight hours of at least 1500 hours and recent experience that exceeds the operator’s pre-hire qualifications such as current air medical and/or search and rescue experience or ATP rated) prior to an assignment with a medical service with the following stipulations:

1. A minimum of 1200 helicopter flight hours
2. At least 1000 of those hours must be as PIC in rotorcraft
3. 100 hours unaided (if pilot is not assigned to an NVG base/aircraft)
4. 100 hours unaided or 50 hours unaided as long as the pilot has 100 hours aided (if assigned to an NVG base/aircraft)
5. A minimum of 500 hours of turbine time—1000 hours of turbine time strongly encouraged

05.07.03 ATP certificate and instrument currency is strongly encouraged.

Examples of Evidence to Exceed Compliance:
All pilots are ATP rated.

05.07.04 Pilot training requirements

1. Initial training must, at a minimum, consist of the following and be verified by written criteria, outlines curriculum. Use of FAA approved training devices and simulators (aircraft appropriate) are strongly encouraged along with mission specific scenario-based training.
 a. Terrain and weather considerations specific to the program’s geographic area
 b. Orientation to the hospital or health care system associated with the medical service
 c. Orientation to infection control, medical systems installed on the aircraft and patient loading and unloading procedures
 d. Orientation to the EMS and public service agencies unique to the specific coverage area.
 e. Instrument Meteorological Conditions (IMC) recovery procedures conducted solely by reference to instruments or IFR currency
 f. IFR currency is encouraged.
 g. Controlled Flight into Terrain (CFIT) prevention training for day or night operations that includes FAA guidelines or pertinent national guidelines for acceptable vertical and lateral deviation limits from the proposed en route course and altitude based on terrain and obstructions
 h. 50% of the recommended training hours must be conducted at night.
 i. Minimum requirements for specific training in aircraft type:
• Factory school or equivalent (ground and flight)

• 5 hours as pilot in command or at the controls prior to EMS missions if transitioning from a single; from a twin to a single; or from a twin to a twin

• 10 hours as pilot in command or at the controls prior to EMS missions if transitioning from a single to a twin engine aircraft

j. Minimum requirements for area orientation:

• 5 hours area orientation of which two hours must be at night as pilot in command or at the controls prior to EMS missions

• Training hours in aircraft type and area orientation may be combined depending on the experience and background of the pilot

k. Air Medical Resource Management (AMRM), consistent with national aviation regulations, i.e., FAA Advisory Circular No. 120-51E, 2004 and FAA AC 00-64. (Interactive courses strongly encouraged) Specific content of AMRM training and organization of topics must reflect an organization’s unique culture and specific needs, such that curriculum topics may include, but not be limited to:

• Communications Processes and Decision Behavior
 o Briefings
 o Inquiry/advocacy/assertion
 o Crew self-critique re: decisions and actions
 o Conflict resolution
 o Communications and decision making

• Team Building and Maintenance
 o Leadership/followership/concern for tasks
 o Interpersonal relationships/group climate

• Workload Management and Situation Awareness
 o Preparation/planning/vigilance
 o Workload distribution/distraction avoidance
 o Individual factors/stress reduction

2. Recurrent training minimally includes the following and is verified by written criteria, outlines or curriculum. Use of national aviation regulations, i.e., FAA approved training devices and scenario-based simulators are strongly encouraged along with mission specific scenario based training for recurrent training cycles.
a. National aviation regulations, i.e., FAR Part 135 (135.297 and 135.299) training requirements.

b. Instrument Meteorological Conditions (IMC) recovery procedures conducted solely by reference to instruments every six months at a minimum or IFR currency if operating IFR.

c. CFIT prevention training for day or night operations that includes FAA guidelines or pertinent national guidelines for acceptable vertical and lateral deviation limits from the proposed enroute course and altitude based on terrain and obstructions

d. Annual recurrent training must also include:
 - Local routine operating procedures
 - Area terrain hazards
 - Review of landing sites at referring and receiving hospitals or any operational changes
 - Scene operations procedures
 - Review of landing sites at referring and receiving hospitals or any operational changes

e. Air Medical Resource Management (AMRM), consistent with national aviation regulations, i.e., FAA Advisory Circular No. 120-51E, 2004 and FAA AC 00-64.

Specific content of AMRM training and organization of topics must reflect an organization’s unique culture and specific needs, such that curriculum topics may include, but not be limited to:

- Communications Processes and Decision Behavior
 - Briefings
 - Inquiry/advocacy/assertion
 - Crew self-critique re: decisions and actions
 - Conflict resolution
 - Communications and decision making

- Team Building and Maintenance
 - Leadership/followership/concern for tasks
 - Interpersonal relationships/group climate

- Workload Management and Situation Awareness
 - Preparation/planning/vigilance
 - Workload distribution/distraction avoidance
Individual factors/stress reduction

- Annual review of infection control, medical systems and installations on the aircraft, patient loading and unloading procedures

Examples of evidence to exceed compliance:
All pilots undergo initial and annual scenario-based simulator training.

05.08.00 RELIEF PILOT

A planned and structured orientation must be provided to the relief pilot with criteria to be based on the mission statement. The relief pilot must have the same qualifications and limitations as a new pilot.

05.08.01 The orientation must, at a minimum, contain:

1. Role responsibilities
2. Area, weather, terrain, aircraft and program-specific orientation

05.08.02 Currency must be determined prior to the beginning of operations, and there is a risk assessment tool to identify the risks at a specific base such as area and terrain, weather and program-specific idiosyncrasies.

05.09.00 MAINTENANCE

05.09.01 Training- There must be a mechanic primarily assigned to each specific aircraft who must be appropriately qualified to maintain the aircraft operated by the medical service and who possesses two years of rotorcraft experience as a certified airframe and power plant mechanic prior to assignment with the medical service.

1. The mechanic primarily assigned to a specific aircraft must be factory schooled or equivalent in an approved program on the type specific airframe, the power plant and all related systems. The primarily assigned mechanic provides direct (on-site during maintenance) supervision to other mechanics assisting with maintenance that may not have this level of experience or training.
2. All mechanics must receive formal training on human factors and maintenance error reduction. (See References)
3. A policy is written that grants the mechanic permission without fear of reprisal to decline performing any maintenance critical to flight safety that he has not been appropriately trained for, until an appropriately trained mechanic is available to directly supervise or assist.
4. Annual review of infection control, medical systems and installations on the aircraft, patient loading and unloading procedures for all mechanics
5. At least one technician is available for each service with formal training on the aircraft electrical system and formal training on the autopilot system.
6. Training related to the interior modification of the aircraft:
 a. Must prepare the mechanic for inspection of the installation as well as the removal and reinstallation of special medical equipment
b. Includes supplemental training on service and maintenance of medical oxygen systems and a policy as to who maintains responsibility for refilling the medical oxygen systems.

05.09.02 Staffing - A single mechanic on duty or on call 24 hours a day must be relieved from duty for a period of at least 24 hours during any seven consecutive days, or the equivalent thereof, within any one calendar month. In addition:

1. It is strongly encouraged that mechanics must not be permitted to work more than 14 continuous hours.

2. Following extended maintenance such as 12–14 continuous hours, it is strongly recommended that a mechanic be scheduled for eight ten hours of uninterrupted rest.

3. 1.5 mechanic full-time equivalents are encouraged for one 24 hour aircraft. For more than one aircraft, staffing must be appropriate to the hours the aircraft are in service, the availability of backup or on-call mechanics and the number of bases necessitating travel time.

4. Back-up personnel must be provided to the mechanic during periods of extensive scheduled or unscheduled maintenance or inspection. Complexity of the aircraft and an increased number of flight hours may be considerations for increased mechanic staffing.

05.09.03 Maintenance Facilities

1. There must be a mechanism/procedure for alerting flight and medical personnel when the aircraft is not airworthy.

2. A hangar or similar-type facility must be available during inclement weather and for the mechanic to perform heavy maintenance. (Heavy maintenance is generally described as removal and installation of any component that requires a lift device or inspections that require five or more hours).

3. Specific workshop area criteria. Workshop area must be in close proximity to the helipad. A workshop area is defined as an area where a desk, shelves, workbench, storage, and telephone are available.

 a. Workshop area must be climate-controlled, heated and cooled, to avoid adverse effects of temperature extremes.

 b. Appropriate ventilation will be installed to clear the facility of hazardous fumes (such as those from fuels, solvents, oils, adhesives, cleaners) common to the aviation environment.

 c. Workshop area must be well lit with the appropriate number of electrical outlets.

 d. Floodlights must be available on the helipad – fixed and/or portable. Luminescence level will be equal to the modern office environment.

 e. Hand cleaners, disinfectants and eye wash bottles are to be available.

 f. Tools are locked in a secured area when not in use.

 g. There is a policy to address the control of foreign object debris (FOD).

 h. There is a tracking system for the mechanic to account for tools and parts after performing maintenance.
4. Storage of equipment, parts, and tools is orderly and clear of fire hazards and in compliance with national health and safety standards i.e., OSHA and Environmental Protection Agency (EPA) regulations.

5. There is a system to periodically track timed parts and expiration dates on shelf items.
 a. All parts are properly tagged and environmentally protected.
 - Parts are wrapped or boxed in a manner that prevents damage or contamination.
 - Open ends of fabricated and bulk lines and hoses are capped or covered.
 - Serviceable parts are kept in a separate area from unserviceable parts.
 b. Parts received are inspected to ensure an approved vendor provided them and that the required certification documentation is provided.

6. Airworthiness directives and service bulletins are coordinated to ensure they are accomplished on time.

7. There is a method to track all deferred maintenance items and coordinate all requirements to support closure.

8. There is a method to track tool calibration status.
 a. Tools requiring calibration have documentation or tags on the tools that list the last calibration date and the next due date.
 b. If employee-owned tools are permitted on the premises, there is a system to ensure that these tools are currently calibrated.

05.09.04 Maintenance Distractions—A policy must be written and implemented to reduce the likelihood of interruptions and distractions to the mechanic, such as:

1. The mechanic's phone must have voice mail or messaging.

2. Aircraft tours, public relations events, janitorial services, etc., must be postponed or canceled if involving the aircraft while maintenance is being performed.

3. Mechanic’s work site (hangar-helipad) must not be used as a gathering place/social area by the flight team while maintenance is being performed.

4. All calls and inquiries regarding the aircraft status will be screened.

05.10.00 HELIPAD

05.10.01 Primary and receiving hospital helipad(s) must:

1. Be marked (with a painted H or similar landing designation) using A.C 150/5390-2C as a guide.

2. Be identified by a strobelight or heliport beacon. A beacon may not be necessary when the location of the hospital can be readily determined by the lights(s) on a prominent building or landmark near the helipad.
3. Have perimeter lighting for night operations

4. Have a device to identify wind direction and velocity (i.e., windsock). The wind indicator must be located in an illuminated area or lighted for night operations.

5. Have at least one clear final approach and takeoff area (FATO) according to the FAA Advisory Circular entitled Heliport Design Advisory Circular includes: using A.C 150/5390-2C as a guide.
 a. Takeoff and landing area length and width, or diameter, must be 1.5 times the overall length of the helicopters that utilize the helipad.
 b. Surface of the helipad must be clear of objects, including parked helicopters.
 c. A parking area must be provided if more than one helicopter at a time is to be accommodated.

6. Have at least two approach and takeoff paths, oriented to be 90-180 degrees apart

7. Have adequate fire retardant chemicals readily available – at least one portable fire extinguisher shall be provided for each takeoff and landing area, parking area, and fuel storage area.

8. Helipad is designed so that fuel spills shall be directed away from access/egress points.

9. Helipad has two access points at least 90 degrees from each other and fences do not prevent access by fire-fighting personnel.

10. Smoking is not permitted within 50 feet of the landing pad edge.

11. No smoking signs and helipad warning signs shall be posted at access/egress points to the helipad.

12. Have an emergency response plan

13. Have documented, ongoing safety programs for those personnel responsible for loading and unloading patients or working around the helicopter on the helipad
 a. Annual training includes:
 • The emergency response plan
 • Operations of the heliport
 • Safety procedures around the helicopter
 • Communication systems
 • Operation of the fire protection system

14. Have evidence of adequate security— a minimum of one person to prevent bystanders from approaching the helicopter as it lands or lifts off, or perimeter security such as fencing, roof top, etc. A means must exist to monitor the primary helipad if accessible to the public, i.e., through direct visual monitoring or closed circuit TV.
15. There must be a policy to address more than one running aircraft at any one time and a policy to address permission to land or take off from the helipad.

a. Communications policies will include:

- Procedures that coordinate arrivals and departures with referring and receiving hospital helipads - specific contact arrangements are pre-arranged for each frequently used location.

- Procedures that coordinate arrivals and departures from hospital helipads with other air medical services in the region

- Staging if more than one aircraft is expected

- Air to air communications

- Hosting common frequencies

- Procedures that require communications specialists to ask if more than one aircraft is incoming to the same hospital helipad or scene

- Written agreements with local, regional or state agencies that incoming aircraft will announce in the blind on a common frequency when operating into a hospital and scenes where no common frequency has been pre-established. At 10 minutes from ETA, any inbound aircraft must communicate on 123.025 or commonly agreed upon frequency.

b. Crew Coordination:

- Strict enforcement of sterile cockpit

- One medical crewmember taking active part in watching for obstructions during the critical stages of flight

- Before departing from a scene or a sending institution, the medical crew and the pilot must discuss any alternative hospitals that they might need to divert to must the patient’s condition change. The pilot and medical crew are encouraged to pre-program any radios or navigation equipment for this alternative destination to minimize the workload required to effect this change, must the need arise as coordinated with the communications center.

c. It is strongly encouraged that the program develops pre-determined landing sites for scene coordination with ground agencies where possible.

16. There is limited distance from the helipad to the hospital (positioned at the closest, safe location) in order to minimize the effects to the patient.

a. Patient monitoring must continue without interruption between the helipad and the hospital.

b. The medical crew is continuously supplied and equipped so that emergent patient interventions can be performed as needed between helipad and hospital.
17. Hearing protection is provided for and used by all personnel who assist with patient rapid loading/unloading.

18. Evidence of a system to communicate changes (construction, additions, obstructions, etc.) to the helipad for users of the primary helipad(s) must be available and may include a pilot’s memo book or a database in the communications center. A system to record acknowledgment must be in place.

 a. There is a system of photos used to familiarize pilots with helipad locations and conditions as a baseline for noting changes in conditions as well as providing a training aid for new pilots.

 b. There is an FAA form 5010-5 on hand (for programs that own or operate their own helipad) for the helipad.

05.10.02 For Rooftop Helipads

 a. Two means of egress at least 30’ apart that are not located on the same side of the rooftop heliport.

05.10.03 Occasional or episodic use helipad. Helipads used occasionally (such as at referring or receiving hospitals):

1. Evidence of a system to communicate changes to the occasionally used helipads (at referring or receiving facilities, predesignated helistops, fueling pads, etc.) must be available to users of the helipads and may include a pilot’s memo book or a database in the communications center.

2. Helipads used occasionally should be reviewed periodically or during normal operations for the following, and changes are noted in the database or in other means of communications to describe:

 a. Obstructions and hazards

 b. Lighting for night operations

 c. Approach and departure obstacles and/or routes

 d. Special procedures or considerations, i.e., noise abatement

 e. Adequate security to prevent bystanders from approaching the helicopter as it lands and lifts off

 f. Communications requirements

 g. Adequate fire retardant chemicals are readily available which must include:

 • A minimum of one portable fire extinguisher with a minimum range of 80-B:C. (See References)

05.10.03 Temporary scene landings must be:

1. Secured

2. Lit at the perimeter with handheld floodlights, emergency vehicles or other lighting source to define the designated landing area at night

3. Free of obstructions and ground debris
4. Appropriate to the size of the helicopter

05.11.00 FUEL SYSTEMS

05.11.01 A policy must require that the pilot or designee stay with the aircraft when refueling to verify fuel type and quantity received during on-site and off-site refueling.

05.11.02 On-site refueling

1. If a certificate holder maintains and operates its own fuel farm, then there must be a written policy that clearly identifies who has responsibility for quality control checks on the fuel system.
 a. Daily, monthly, quarterly and annual checks are required.
 b. Documentation is consistent with national aviation guidelines (i.e., FAA AC 150-5230-4A) or international standard.
 c. If using a vendor’s fuel farm, verify QA fuel quality compliance.

2. There is a procedure to ensure the fuel is free of contaminants before dispensing into the aircraft.

3. Procedures clearly demonstrate safe practices and fire prevention considerations at the on-site refueling facility.
 a. At least one B&C fire extinguisher is located no less than 75 feet from the fuel dispensing station.
 b. There is a minimum of one remote fuel shut-off device.

4. There is a policy regarding on-site handling and disposal of waste fuel, oil and any other hazardous materials.

5. Fueling equipment shall be located 25 ft (7.6 m) from hangars and fixed fire protection equipment (NFPA 4.7.2 or international standard)

6. Fueling equipment shall not hinder or obstruct access to exits or firefighting equipment. (NFPA 4.7.1 or international standard)

7. Any above ground storage tanks must be 50 feet from the edge of the FATO (4.3.3 or applicable international standard)

8. The fuel system is approved by the Environmental Protection Agency (EPA)
06.01.00 CERTIFICATE OF THE AIRCRAFT
Certificate holder must meet all Federal Aviation Regulations (FAR’s) or national/international regulations specific to the operations of the medical service in the country of residence, as applicable. This includes a FAR Part 135 or national aviation regulations. Certificate (public service medical transport agencies are included in this requirement) or a pertinent operating certificate if outside of the U.S., and Air Ambulance Operations Specifications specific to EMS operations.

06.02.00 ALL “PATIENT TRANSPORT FLIGHTS”* must be conducted under FAA Part 135 regulations for weather minimums and flight crew duty time limitations.

1. Patient transport flight is defined as any flight segment conducted by rotor or fixed wing equipment that is necessary for transporting patients and the medical teams required to care for such patients. Flight segments included in this definition are: flights for refueling and repositioning for a specific patient transport (including organ donor transports); picking up and returning medical teams to an assigned base; the actual flight segment involving patient movement; and any time medical teams are on board.

2. Long Range fixed wing transports are defined as “any patient leg in excess of 3 hours (measured in time, not distance because of winds) where there are no alternative capabilities for patient care needs or aviation operations.

06.03.00 AIRCRAFT

06.03.01 The aircraft should be a twin-engine or turbine single engine aircraft appropriate to the mission statement and scope of care of the medical service and listed on the air carrier’s Operations Specifications.

06.03.02 Pressurized aircraft with air conditioning are strongly preferred for medical transports. A physician familiar with altitude physiology must be consulted or written policies address altitude limits for specific disease processes of the patient to be transported in an unpressurized cabin.

06.03.03 Evidence of adequate security at the base of operations—A means must exist to monitor the aircraft (i.e., through direct visual monitoring or closed circuit TV) or the aircraft must be in a secured location with locked perimeter fencing or hangar available.

06.04.00 WEATHER

06.04.01 VFR or IFR flight plans are filed or communications center does flight following with every takeoff through post landing.

1. There is a system of obtaining pertinent weather information.

 a. The pilot in command (PIC) is responsible for obtaining weather information according to policy, which must address at a minimum:

 • Routine weather checks.

 • Weather checks during marginal conditions
• Weather trending

2. Communication between pilots, medical personnel, and communication specialists regarding the most current and forecasted weather is part of a formal briefing.

3. Weather Minimums If flying under VFR - weather minimums must meet or exceed FAR 135.203 and 135.205 as follows:
 a. Minimum altitudes:
 • Day - below 500 feet above the surface or less than 500 feet horizontally from any obstacle
 • Night - an altitude less that 1000 above the highest obstacle of 5 miles from the course intended to be flown or in designated mountainous terrain, less than 2000 feet about the highest obstacle within a horizontal distance of 5 miles from the course intended to be flown
 b. Visibility requirements
 • If the ceiling is less than 1000 feet, visibility must be at least 2 miles.
 c. Operating VFR requires that the program provide flight following according to the criteria listed in 03.10.00

06.04.02 There is a policy designed to discourage ‘shopping’ by first responders and other requesting agents that specifically addresses how the program interfaces with other air medical services in the same coverage area to alert them of a weather turn-down.

06.04.03 It is recognized that programs in a common geographic area may experience differing weather conditions and that programs may have differing capabilities. However, programs that turn down a request within 250 miles radius of the base due to weather must:

1. Ask the requesting agent if another flight program had turned down the request
2. Notify the requesting agent that the programs in their coverage area share weather information and turn-downs for safety reasons
3. Notify other programs within their coverage area of the turn-down as soon as possible
4. Provide the on-duty pilot with contact information from other programs for questions about the weather concerns and details (fog, precipitation, wind, etc.)
5. Inform the on-duty pilot immediately if notified of a weather turn-down by another program
6. Have written evidence of tracking the requests turned down for weather and of participation in a regional notification system as described in 1 through 5 above

06.04.04. The certificate holder will maintain an FAA approved training program in accordance with 14CFR Part 135, subpart H. The training program must contain a procedure for evaluating previous experience and training to determine what specific training a new flight crewmember will require to satisfactorily meet all required training and checking standards. The certificate holder will also have a process in place to properly track experience levels of new Captains that must comply with the higher weather minimums as required under 14CFR Part 135.225 (e).
06.05.00 PILOT PERSONNEL

06.05.01 Staffing – The pilot must be readily available within a defined call-up time to ensure expeditious and timely response. There must be a written policy describing the availability of pilots.

 1. Scheduling practices reflect consideration for minimizing duty-time fatigue, length of shift, number of shifts per week and day-to-night rotation.

 a. The certificate holder has a written policy regarding pilots on call with the use of remote paging devices, cell phones or other electronic communication device. The policy indicates how the use of pagers impacts duty-time limitations.

Examples of evidence to exceed compliance:
Two-pilot operations are required even when the aircraft is legally flown with a single pilot.

 2. Physical well-being is promoted by the employer wellness programs to include but not limited to balanced diet, weight control, and no smoking.

 3. Operations facilities must include a quiet area for flight planning, training, and record-keeping.

06.05.02 Pilot determines that the aircraft is in airworthy condition.

 1. Prior to the first flight of shift of duty, the pilot:

 a. Verifies that maintenance is not due on the aircraft

 b. Performs a pre-flight inspection according to the manufacturer’s checklist

 2. A walk-around inspection of the aircraft is performed prior to each takeoff.

06.05.03 The pilot-in-command qualifications.

 1. Must possess 2000 airplane flight hours prior to assignment with a medical service with the following stipulations:

 a. At least 1000 of those hours must be as PIC in an airplane.

 b. At least 500 of those hours must be multi-engine airplane time as PIC. (Not required of single-engine turbine aircraft).

 c. At least 100 of those hours must be night flight time as PIC.

 2. PIC must be ATP rated; SIC is strongly recommended to be ATP rated and must complete a certificate holder’s approved SIC training program.

 3. In aircraft that require two pilots, both pilots must be type rated for that make and model, and both pilots must hold first class medical certificates if the certificate holder operates internationally. **Both pilots must have training on Crew Resource Management (CRM) or Multi-pilot Crew Coordination (MCC)**
For long range flights, the SIC must have 500 multi-engine airplane time.

Examples of evidence to exceed compliance:
All PIC’s and SIC’s are ATP rated, or both pilots hold a PIC Type Rating for the aircraft being operated.

06.05.04 Pilot training requirements

1. Initial training must, at a minimum, consist of the following and be verified by written criteria, outlines or curriculum. Use of FAA approved training devices and simulators along with mission specific scenario based training must be encouraged at initial and recurrent training cycles.

Examples of evidence to exceed compliance:
All pilots undergo initial and annual scenario-based simulator training.

a. Terrain and weather considerations specific to the program’s geographic area
b. Orientation to the hospital or health care system associated with the medical service
c. Orientation to infection control, medical systems installed on the aircraft and patient loading and unloading procedures
d. Air Medical Resource Management (AMRM), consistent with national aviation regulations i.e., FAA Advisory Circular No. 120-51E, 2004 and FAA AC 00-64. Specific content of AMRM training and organization of topics must reflect an organization’s unique culture and specific needs, such that curriculum topics may include, but not be limited to:

- **Communications Processes and Decision Behavior**
 - Briefings
 - Inquiry/advocacy/assertion
 - Crew self-critique re: decisions and actions
 - Conflict resolution
 - Communications and decision making

- **Team Building and Maintenance**
 - Leadership/followership/concern for tasks
 - Interpersonal relationships/group climate

- **Workload Management and Situation Awareness**
 - Preparation/planning/vigilance
 - Workload distribution/distraction avoidance
 - Individual factors/stress reduction
e. Training in infection control, medical systems and installations on the aircraft, patient loading and unloading procedures

f. Minimum requirements for specific training in aircraft type:
 - 25 hours in specific make and model of aircraft before flying as PIC on patient missions or completion of a commercially established training program for the specific make and model aircraft and the successful completion of the check ride

2. Annual recurrent training to minimally include the following and verified by written criteria, outlines or curriculum:
 a. Part 135 instrument proficiency check as required by national aviation regulations i.e., FAR 135.297 for operations that conduct IFR flights
 b. Annual review of infection control, medical systems installed on the aircraft, and patient loading and unloading procedures
 c. Air Medical Resource Management (AMRM), consistent with FAA Advisory Circular No. 120-51E, 2004 and FAA AC 00-64
 d. Specific content of AMRM training and organization of topics must reflect an organization’s unique culture and specific needs, such that curriculum topics may include, but not be limited to:
 - Communications Processes and Decision Behavior
 - Briefings
 - Inquiry/advocacy/assertion
 - Crew self-critique re: decisions and actions
 - Conflict resolution
 - Communications and decision making
 - Team Building and Maintenance
 - Leadership/followership/concern for tasks
 - Interpersonal relationships/group climate
 - Workload Management and Situation Awareness
 - Preparation/planning/vigilance
 - Workload distribution/distraction avoidance
 - Individual factors/stress reduction
06.06.00 POLICIES

06.06.01 There is an established written policy to ensure that the pilot is notified of any add-on equipment for weight and balance considerations.

06.06.02 There is a written policy and outline of passenger safety briefings in accordance with 14CFR Part 135.117.

06.07.00 MAINTENANCE

06.07.01 The mechanic primarily assigned to a specific aircraft must possess a minimum of two years of airplane experience as a certified airframe and power plant mechanic prior to assignment with a medical service, or, in the case of a repair station, the Maintenance Repair Organization (MRO) will hold a FAA issued certificate under 14CFR Part 145, and hold the ratings and/or limitations within its Operations Specifications for the make/model for which it is performing scheduled maintenance upon.

06.07.02 The mechanic(s) must be appropriately qualified to maintain the aircraft operated by the medical service and who possesses a minimum of two years of experience as a certified airframe and power plant mechanic prior to assignment with the medical service.

1. Any mechanic performing scheduled maintenance to a specific aircraft must be factory schooled or equivalent in an approved program on the type-specific airframe, the power plant and all related systems.

2. All mechanics must receive formal training on human factors and maintenance error reduction. (See References)

3. A policy is written that grants the mechanic permission, without fear of reprisal, to decline from performing any maintenance critical to flight safety that he has not been appropriately trained for, until an appropriately trained mechanic is available to directly supervise or assist.

4. There is an annual review of infection control, medical systems and installations on the aircraft, patient loading and unloading procedures for all mechanics.

5. There will be at least one technician or MRO available for each service with formal training on the aircraft electrical system and formal training on the autopilot system (if autopilot equipped).

06.07.03 Training must prepare the mechanic for inspection of the installation as well as the removal and reinstallation of special medical equipment.

06.07.04 There is supplemental training on service and maintenance of medical oxygen systems and a policy as to who maintains responsibility for refilling the medical oxygen system.

06.07.05 The certificate holder will have a system in place to track all scheduled inspections as required by its FAA approved maintenance program. This system will include all Airworthiness Directives (AD) and applicable Instructions for Continued Airworthiness (ICA).

06.08.00 STAFFING

06.08.01 A single mechanic on duty or on call 24 hours a day must be relieved from duty for a period of at least 24 hours during any seven consecutive days, or the equivalent thereof, within any one calendar month. In addition:
1. It is strongly encouraged that mechanics must not be permitted to work more than 14 continuous hours.

2. Following extended maintenance, such as 12–14 continuous hours, it is strongly recommended that a mechanic must be scheduled for eight ten hours of uninterrupted rest.

06.08.02 For more than one aircraft, staffing must be appropriate to the hours the aircraft are in service, the complexity of the aircraft, and the number of bases necessitating travel time. Backup personnel must be provided to the mechanic during periods of extensive scheduled or unscheduled maintenance or inspection.

06.09.00 MAINTENANCE FACILITIES

06.09.01 There must be a mechanism/procedure for alerting flight and medical personnel when the aircraft is not airworthy.

06.09.02 The maintenance facilities are large enough to accommodate the aircraft, adequately lighted and properly equipped for required maintenance.

06.09.03 Specific workshop area criteria

1. Workshop area must be in close proximity to the hangar. A workshop area is defined as an area where a desk, shelves, workbench, storage and telephone are available.

2. Workshop area must be climate controlled (heated and cooled) to avoid adverse effects of temperature extremes.

3. There is appropriate ventilation to clear the facility of hazardous fumes (such as fuels, solvents, oils, adhesives, cleaners) common to the aviation environment.

4. Work area must be well lit with the appropriate number of electrical outlets.

5. Floodlights must be available in the hangar or on the tarmac, fixed and/or portable. Luminescence level will be equal to the modern office environment.

6. Hand cleaners, disinfectants and eye wash bottles must be available.

7. Tools are locked in a secured area when not in use.
 a. There is a policy to address the control of foreign object debris (FOD).
 b. There is a tracking system for the mechanic to account for all of the tools and parts, after performing maintenance.

06.09.04 Storage of equipment, parts, and tools is orderly and clear of fire hazards and in compliance with OSHA and EPA regulations.

06.09.05 There is a system to periodically track timed parts and expiration dates on shelf items.

1. All parts are properly tagged and environmentally protected.
 a. Parts are wrapped or boxed in a manner that prevents damage or contamination.
 b. Open ends of fabricated and bulk lines and hoses are capped or covered.
c. Serviceable parts are kept in a separate area from unserviceable parts.

2. Parts received are inspected to ensure an approved vendor provided them and that the required certification documentation is provided.

06.09.06 If the certificate holder has been issued Operations Specification D095 (Minimum Equipment Lists), then there must be a method to track all deferred maintenance items and coordinate all requirements to support closure.

06.09.07 There is a method to track tool calibration status.

1. Tools requiring calibration have documentation or tags on the tools that list the last calibration date and the next due date.

2. If employee-owned tools are permitted on the premises, there is a system to ensure that these tools are currently calibrated.

06.10.00 MAINTENANCE DISTRACTIONS
Policy must be written and implemented to reduce the likelihood of interruptions and distractions to the mechanic, such as:

06.10.01 The mechanic's phone must have voice mail or messaging.

06.10.02 Aircraft tours, public relations events, janitorial services, etc., must be postponed, if they involve the aircraft while maintenance is being performed.

06.10.03 Mechanic's work site (hangar) must not be used as a gathering place/social area by the flight team while maintenance is being performed.

06.10.04 All calls and inquiries regarding the aircraft status will be screened.

06.11.00 FUEL SYSTEM
If a certificate holder maintains and operates its own fuel farm, then there must be a written policy that clearly identifies who has responsibility for quality control checks on the fuel system.

06.11.01 There is a procedure to ensure the fuel is free of contaminants before dispensing into the aircraft.

06.11.02 A policy clearly identifies who has responsibility for quality control checks on the service's fuel system.

1. Daily, monthly, quarterly and annual checks are required.

2. Documentation is in compliance with or national equivalent i.e., FAA AC 150-5230-4A.

3. If using a vendor’s fuel farm, QA fuel quality compliance is verified.

06.11.03 Procedures clearly demonstrate safe practices and fire prevention considerations at the on-site refueling facility

1. At least one **B&C** fire extinguisher is located no less than 75 feet from the fuel dispensing station.

2. **There is a minimum of one remote fuel shut-off device.**
06.11.04 A policy requires that the pilot or designee stay with the aircraft when refueling to verify fuel type and quantity dispensed when refueling at any location.
07.01.00 AMBULANCE SPECIFICATIONS Vehicles must meet current KKK 1822 guidelines or state licensure requirements in place at the time the ambulance was built.

07.01.01 Licensure- The ambulance will be licensed in accordance with the applicable state and/or local/national laws.

Examples of evidence to meet compliance:
Licenses to operate each ambulance are available and current.

07.01.02 The ambulance must have adequate interior lighting equipment to ensure complete observation of the patient and monitoring equipment used on the patient.

07.01.03 The ambulance must have the capability of shielding the cab from light in the passenger compartment during nighttime use.

07.01.04 Inside of the ambulance must be capable of maintaining temperature ranges to prevent adverse effects on the patient and crew. The temperature must be between 68 degrees F and 78 degrees F (see KKK reference). There is a procedure to monitor inside cabin temperatures.

07.01.05 The ambulance must have a fuel capacity to provide no less than a 175-mile range.

07.01.06 The ambulance must have ground clearance of at least six inches at gross ambulance weight.

07.01.07 The ambulance must be able to fully perform at ambient temperatures minus 30 degrees to 122 degrees F.

07.01.08 The ambulance must be marked clearly to show the name of the service in letters not less than three inches high, and to allow identification of the service from the sides and rear of the ambulance.

07.01.09 Lights and sirens:

1. The ambulance must be equipped with a siren capable of emitting sound that is audible under normal conditions from a distance of not less than 500 feet.

2. The ambulance must have at least one light capable of displaying red light (with a 360 degree capacity) or strobe lights that are visible under normal atmospheric conditions from a distance of 500 feet from the front of the ambulance.

07.01.10 The ambulance is equipped with road hazard equipment to be used in the event of a breakdown.

1. Road hazard equipment must minimally include:

 a. Flashlight

 b. Road marking device – cones, flares or triangles, for example

 c. Tools, wrench, screwdriver, hammer

 d. Leather, heavy-duty gloves
e. Reflective vests
f. Hatchet or band saw
g. Equipment for dealing with snow as appropriate to the environment

07.02.00 COMMUNICATIONS

07.02.01 There is a means of communication other than a cell phone between:

1. The driver position and patient compartment
2. The ambulance and medical control
3. The ambulance and public safety

07.02.02 A policy prohibits cellular phone or other communications devices without an acceptable integrated hands free system use while the vehicle is in motion or while refueling except for vital communications or as compliant with state or international regulations. Texting is strictly prohibited.

07.03.00 QUALIFICATION OF DRIVERS

07.03.01 All persons who drive the ambulance must be at a minimum certified as an Emergency Medical Technician Basic (EMT-B) or have equivalent training.

07.03.02 Drivers must have a minimum of two years’ experience as a licensed driver or operator.

07.03.03 Drivers are required to complete defensive driving training program that is developed by the provider or outside agency. The training must include an Emergency Vehicle Operations Course (EVOC) or equivalent, which consists of at least four hours of reviewed ambulance driving under emergency conditions.

07.03.04 This training program must be repeated for each driver at least every four years.

07.03.05 Ambulance co-pilot responsibilities and duties:

a. Ambulance co-pilot will have assigned duties to support the driver
 • In navigation – setting/verifying GPS input
 • Lights and sirens response
 • Monitoring driver fatigue/impairment – the ambulance co-pilot is expected to stay alert on all legs of the transport.
 • Cell phone and computer use not essential to transports are prohibited.
07.04.00 AMBULANCE MAINTENANCE

07.04.01 Each ambulance must be maintained in full operating condition and in good repair, and documentation of maintenance must be kept on file. In addition, there must be a regular documented preventive maintenance program in accordance with the requirements of the manufacturer and other regulatory agencies.

1. There are documented daily checks of the vehicle for damages and equipment failure

2. Major fluid and tire pressure checks are completed twice a week at a minimum

07.04.02 There must be no evidence of damage penetrating the body of the ambulance or holes that may allow exhaust gases to enter the patient compartment.

07.04.03 The interior of the ambulance, including all storage areas, must be kept clean in compliance with OSHA (or equivalent) standards, that is free of dirt, grease and other biohazardous or noxious matter.

07.04.04 The ambulance must be cleaned after each patient transport as appropriate. All interior surfaces in the ambulance and medical equipment surfaces that came in contact with the patient must be immediately cleaned and disinfected or disposed of in a secure biohazard container.

07.05.00 MECHANIC
The mechanic must have experience as a certified mechanic in a shop environment, or the maintenance must be done at a certified shop specific for the make and model of the chassis.

07.06.00 POLICIES

07.06.01 There is a written policy that addresses speed limitations and all aspects of traffic law compliance that pertain to ambulance operations.

07.06.02 There is a written policy that describes the appropriate use of operating with lights and sirens. Red lights and sirens must be used only when time is critical to the patient’s outcome. The ambulance must come to a complete stop at intersections as appropriate including when operating with lights and sirens.

07.06.03 There is a written policy that addresses a procedure to follow when the ground ambulance comes upon an accident scene. Policy must be consistent with state regulations.

07.06.04 There is a written policy that outlines a procedure to follow when the ground ambulance is involved in an accident with damage and/or injuries.

07.06.05 There is a written policy outlining the procedure for a mandatory drug test of the driver after any accident.

07.06.06 There is a written policy outlining the procedure to follow when the ambulance breaks down.

07.06.07 There is a written policy dealing with safety aspects of driving:

1. Driver duty and rest time

2. Inclement weather and responsibility for aborting the transport if there is a safety concern
3. Driving records (speeding and other traffic violations) are reviewed by management minimally on an annual basis.

07.06.08 There must be a written policy addressing weather/environmental conditions that prohibit transport such as zero/zero visibility and highway patrol road closures.